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A B S T R A C T

Decentralization of online social platforms offers a variety of potential benefits, including divesting of
moderator and administrator authority among a wider population, allowing a variety of communities with
differing social standards to coexist, and making the platform more resilient to technical or social attack.
However, a platform offering a decentralized architecture does not guarantee that users will use it in a
decentralized way, and measuring the centralization of socio-technical networks is not an easy task. In
this paper we introduce a method of characterizing inter-community influence, to measure the impact that
removing a community would have on the remainder of a platform. Our approach provides a careful definition
of ‘‘centralization" appropriate in bipartite user-community socio-technical networks, and demonstrates the
inadequacy of more trivial methods for interrogating centralization such as examining the distribution of
community sizes. We use this method to compare the structure of five socio-technical platforms, and find
that even decentralized platforms like Mastodon are far more centralized than any synthetic networks used for
comparison. We discuss how this method can be used to identify when a platform is more centralized than it
initially appears, either through inherent social pressure like assortative preferential attachment, or through
astroturfing by platform administrators, and how this knowledge can inform platform governance and user
trust.
Online social spaces are vulnerable to centralized authorities mak-
ng decisions that negatively affect the community. In 2022, the Soft-
are Freedom Conservancy recommended that all developers migrate

heir projects away from GitHub [1], after Microsoft bought the soft-
are development collaboration platform and used open source
rojects as training data for their commercial CoPilot software, in
iolation of open source licenses and community standards. The same
ear, users and advertisers departed Twitter after its purchase by
lon Musk and subsequent changes in community policy and staffing,
ncluding firing content moderators [2] and reinstating a number
f accounts banned for violating the platform’s hateful content and
arassment policies [3]. Reddit moderators have historically engaged
n blackouts to protest administrative policies [4], and these trends
re ongoing; in June, 2023, Reddit announced plans to begin charging
or API access, sparking warnings from scientists [5], outrage among
sers, and a protest across nearly 9000 subreddits, the long-term
ffects of which remain to be seen. As users express dissatisfaction
ith platform administrators, they have sought alternative platforms
ithout centralized control, leading to the rapid growth of ‘‘federated’’
latforms like Mastodon [6] and Bluesky.1 Alternatively, other users
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E-mail addresses: milo.trujillo@uvm.edu (M.Z. Trujillo), laurent.hebert-dufresne@uvm.edu (L. Hébert-Dufresne), james.bagrow@uvm.edu (J. Bagrow).

1 Bluesky is still in beta, and while the protocol is federated, only one instance exists at the time of writing.

have promoted self-hosted platforms, such as independently operated
git servers, or peer-to-peer hosting solutions such as the Interplanetary
File System (IPFS) or web-torrent video hosting software PeerTube.
Some deplatformed users have also responded by creating close fac-
similes of existing centralized platforms with extremely permissive
content-policies, frequently called ‘‘alt-tech’’ platforms [7].

What exactly is ‘‘centralization’’ in an online social network? Does
it describe ownership of the platform? Its technical infrastructure?
The creation and enforcement of community norms? The distribution
of activity and reach of content producers? Centralization has long
been ill-defined by academics [8], and ‘‘decentralization’’ joins as a
widely-used but contextually redefined term today [9]. Of particular
interest to us is a notion of group social influence: How much does
one community impact others across a platform? For example, how
independent are subreddits on Reddit, and how closely interlinked are
Mastodon instances, the nascent ‘‘decentralized Twitter alternative?’’
Our goal is to measure the influence of a socio-technical platform’s sub-
communities on their peers, providing a mesoscale metric to quantify
centralization at an inter-group level.
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Fig. 1. The influence of a community is tied to both its size and topological role in a network. In the centralized network, the orange community at the center both has the
largest population of blue users, and serves as a bridge between four other communities. In the decentralized example, communities are of variable size, but none have a pivotal
osition to influence their peers. In the ambiguous case, one community is much larger, but the remaining network matches the ‘‘decentralized" example. Neither a distribution
f community sizes nor purely structural measurements like betweenness centrality or graph conductance adequately capture this notion of community-level influence.
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Measuring group-level influence has applications in content mod-
eration, platform governance, and public awareness of administrative
behavior. First, it allows administrators, moderators, and community
organizers to identify and proactively avoid risks to community wel-
fare. For example, if Mastodon’s goal is to create a decentralized
Fediverse then measuring the influence of a large instance can inform
decisions on when to close registration on that instance, or stop recom-
mending it on new-user onboarding websites like , to direct new users
to more diverse instances. If administrators of smaller instances want
to mitigate the viral spread of information from influential instances,
they can de-emphasize posts from the larger instance, for example by
hiding them from the federated feed. This aligns with recent proposals
to design social media for abusability, by making design choices that
limit usability for a minority of users to protect usability for the
majority [10].

Next, measuring community influence allows platform users to iden-
ify when administrators are engaging in ‘‘decentralization astroturf-
ng’’. Some administrators misrepresent the level of decentralization
r community self-governance on their platforms, allowing them to
bdicate responsibility for community moderation and social policy.

For example, Bluesky has no dedicated moderation or trust and safety
eam, because they publicly aspire to provide tools and protocols for

communities to self-govern [11]. However, after two years and almost
three million users, Bluesky’s federated protocol only has one server,
administered by Bluesky employees, who willingly or not have im-
mense influence over acceptable speech on their platform. By contrast,
Mastodon has thousands of federated instances, each with their own
moderators and content policies. However, if instance administrators
wish to federate with the largest three instances, containing more than
half the Mastodon population, they must have a compatible content
policy, enforcing an implicit monoculture. These patterns can be iden-
tified by measuring the number of communities on a platform, and the
influence that the largest communities have over their peers.

One common approach to measuring community-level centraliza-
tion is through community size-distribution. If a small oligarchy of
Mastodon instances dwarf the population sizes of their peers, then one
could presume that the platform is centralized around these instances.
ndeed, several prior studies on Mastodon use community size disparity

as a starting point, or presuppose that the largest instances are the
most significant and focus their study on the largest communities [12–
15]. While the community size distribution is related to centralization,
ssuming they are the same precludes the possibility that a collection
f many smaller instances may be more influential than the few largest,
r that the influence of the largest instances may not be directly related
o their size.

We reject the assertion that the largest communities must be the
most significant, or that their size alone implies centralization, on
he grounds that community size does not correlate with the number
 t

2 
of cross-community links in observed real-world networks. In fact,
our results show multiple platforms where the largest communities
are not well integrated with the platform as a whole (discussed in
esults, especially Fig. 6), allowing a more decentralized network of

communities to exist outside of the largest groups. Under this view,
the largest communities would be the most significant only when they
lso act as important information bottlenecks for the entire system.

To illustrate this discrepancy, consider Fig. 1. In the centralized
anel the largest community serves as a central hub, connecting sev-
ral smaller communities together through shared membership. In the
ecentralized panel community size is normally distributed, and no
ommunity has a pivotal role as a bridge between its peers. Community
ize-distribution and graph-centric metrics like betweenness-centrality
ould agree that the former network is centralized, while the latter

s decentralized. However, the third ambiguous panel presents a more
omplex scenario: the community size distribution is highly unbal-
nced, but the largest community has almost no impact on the remain-
er of the network. The largest community has a high betweenness-
entrality because of its pivotal role in connecting so many users to the
est of the graph, but it has a long path distance from users in other
ommunities and does not serve as a bridge between communities, and
o betweenness-centrality does not match our intuition that the largest
ommunity has a small role in the rest of the network.

We propose a definition of centralization meant to capture the
alignment between rankings of community size and information bot-
tlenecks. To do so, we combine theoretical ideas from graph theory on
ottlenecks and applied concepts from network science about network
obustness. Our metric then measures how removing a community

would impact users within remaining communities, based on the num-
ber of ‘‘bridges’’ between communities. We study a variety of real and
simulated networks with this method to examine platform behavior
under a range of conditions, and we compare our metric to existing

easurements of centralization and network ‘‘bottlenecks’’. Finally, we
iscuss how this work contributes to broader discussions of centraliza-
ion online, and how techniques like ours can be extended with richer
nteraction data.

1. Prior work

Centralization of online platforms is sometimes defined in terms
of decision-making power, or who has the authority to make what
kinds of decisions about the use of the platform. This definition can
be traced to Elinor Ostrom’s work on Institutional Analysis and Devel-
opment [16], which describes ‘‘layers’’ of decisions, from operational
rules (elementary actions any user can perform), to collective rules (the
ontext in which users operate and interact, such as the Twitter feed
r the Amazon marketplace), to constitutional rules (the ‘‘meta’’ rules
hrough which the system changes itself). Modern research on platform
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design often assesses who has decision-making power, and what levers
of change are available to different categories of participants [17,18].

While qualitative studies examine power structures through analyz-
ing governance and rule sets [19,20], network science infers structure
through the observed interactions between humans [8,21]. We quantify
centralization using attributes that fall into three categories: vertex-
level attributes, cluster-level attributes, and graph-level attributes.
Vertex-level attributes like betweenness centrality [8] or eigenvector
entrality [22] measure the prominence of a particular node in terms of
ow well it is connected to its peers, or how many paths flow through
he node. Cluster-level attributes describe groups of vertices, such as
he size of the population that contains a particular attribute, or the
ssortativity describing how likely vertices with a particular attribute
re to be connected to one another. Graph-level attributes describe
spects that span the entire network, including diameter, density,
nd graph conductance [23]. Quantifiability should not be conflated

with objectivity; the modeling choice of what entities are included as
vertices and what relationships are represented as edges or attributes
presupposes what can be considered influential or centralized [24].

Another thread of research tries to join the social theory of cen-
tralization and graph theoretical metrics. [20] distinguish between the
technical underpinnings of a network and its social layers, focusing
n community-run moderation in infrastructure-centralized (Slack, Dis-
ord) and self-hosted (Minecraft) services. Prior Mastodon research also
ridges this gap, including both geographic and data-center distribution
f instances [12], important for understanding resiliency to disrup-
ion or power-outage. This approach aligns with notions of network
obustness where centralization can be measured by how a network
reaks down under targeted pruning of central nodes [25]. Other

studies on Mastodon also integrate its social interaction graph [15],
important for understanding the influence of sub-communities and their
administrators on discourse. Studies on the social structure of Mastodon
primarily focus on individual-centralization, such as a ‘‘border-index’’
of what fraction of a user’s neighbors are on a foreign instance [14]
nd whether some users serve as critical bridges for information flow
etween instances [26], or community-centralization, such as how clus-

tering coefficients differ between communities (instances) [13]. Our
ork intends to add to these options, by considering both a community-

evel centralization metric of how much influence one community has
n the broader platform, and a graph-level centralization score of how
uickly a network deteriorates as its largest communities are removed,
ndicating how much it tends towards monopoly or oligopoly.

Recent social media studies highlight the difference between size
nd importance, demonstrating the need for a better understanding of
maller-yet-influential subgroup dynamics. For example, [10] identifies
 single low-follower Twitter user that has a disproportionate influ-
nce on national COVID-19 discussion by starting arguments in the

replies to the tweets of public officials. Despite not fitting the typical
igh-follower and high-engagement profile of an ‘‘influencer’’ or ‘‘In-
ernet celebrity’’, this account’s behavior and structural role adjacent to
rominent accounts leads to outsized impact. At a regional scale, [27]
ocuses on sentiment-spreading dynamics between Japanese prefec-
ures, proposing a causal measure of social influence based on corre-
ated sentiment between geographic regions in a forecasting model.
ther researchers have focused on cross-platform misinformation cam-

paigns, including [28], showing how bad actors can coordinate across
YouTube, Facebook, and Twitter to thwart content moderation. We
believe that measuring community-level influence through observed so-
cial interlinking will contribute to this conversation on disproportionate
influence at multiple scales.

2. Methods and materials

In the following sections we introduce our metric and two data sets:
ive real world networks that encompass a breadth of configurations,
nd a set of common synthetic networks.
3 
2.1. Measuring centralization: Disruption curves

Prior studies on centralization of social networks often focus on
raph-level attributes such as detecting components, the size of the
iant component, modularity, density, degree distribution [29]. Others

may use ‘‘bottleneck’’ metrics like graph conductance [23] to identify
bridges and key clusters. These metrics are most appealing in unipartite
settings where the structure of the network is not prescribed. However,
we focus on bipartite graphs where communities are well defined, such
as subreddits, Mastodon instances, or newsgroups. In these contexts, we
are not attempting to infer the number or boundaries of communities,
but to measure how influential the known communities are on their
neighbors. The size distribution of communities tells us how large a
subgroup is, but does not capture the overlap between communities. A
graph-wide modularity score describes how well-partitioned the graph
is into clusters, and so approximates how insular communities are, but
cannot provide more nuance as to whether the largest communities are
more integrated than smaller ones, whether small communities are well
connected to larger peers but not to each other, or other topological
features.

We propose that the influence of a community should be measured
in terms of how users outside the community would be impacted
by its absence. In other words, a community’s influence should be
proportional not to its size, but to the number of bridges between it
and other communities. Or, in graph theoretic terms, what fraction
of edges would be cut by removing a community, not counting users
that do not participate outside the community. More succinctly, ‘‘what
percentage of edges from surviving vertices would be cut by removing
a community?’’

We measure disruption cumulatively, rather than discretely per-
community. This allows us to answer questions like ‘‘how influential
are the largest three communities on the rest of the platform?’’ Since
‘‘oligarchies’’ of large and densely interconnected communities may
be common, a cumulative metric is more useful than measuring the
influence of a single community on the rest of the oligarchy.

Formally, we define a set of communities that are being cut, 𝐴,
with associated edges |𝐴|. Each user has a set of edges to one or more
ommunities. If users only have edges to communities in 𝐴, then the
ser is removed along with 𝐴. Surviving users with an edge to at least
ne remaining community are denoted 𝑆, with total edges |𝑆|, and
dges to cut communities in 𝐴 denoted 𝜕 𝑆. The disruption curve is
alculated as 𝜕 𝑆∕|𝑆|. This notation was chosen for its similarity to the
heeger number [23], stressing how our metric measures the alignment

of community size and information bottleneck. Familiarity with the
Cheeger number is unnecessary to understand our metric; we make
a detailed comparison in Section 3.3, but in summary the Cheeger
number is a single-valued metric combining community detection and
graph conductance, while disruption is a cumulative metric that utilizes
available bipartite knowledge.

1 disruption = []
2 for c in communities:
3 remaining = 0
4 original = 0
5 removeCommunity(c)
6 for user in users:
7 if degree(user) > 0:
8 remaining += degree(user)
9 original += originalDegree(user)

10 disruption += [1-(remaining/original)]

Listing 1: Pseudocode for disruption algorithm
We additionally outline the algorithm as pseudocode in Listing 1:.

We recommend caching the size of the smallest community that each
user participates in, and pre-sorting users by the order in which they
will be removed, to avoid computationally expensive references to a
graph or adjacency matrix during each removal-step.
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Table 1
Definitions of communities and edges for each platform examined.

Platform Community definition Edge definition Edge weight

Mastodon Mastodon Instances Between each user and every instance on which they follow
users

The number of users followed on an instance

Penumbra A git server Between a user (identified by email) and each server on
which they have contributed to a repository

The number of repositories committed to on each server

BitChute BitChute channels Between each user and every channel they have commented
on videos from

The number of comments made

Voat A Voat ‘‘subverse’’ Between each user and subverses they have participated in Number of comments made in a subverse
Usenet A Usenet newsgroup Between each user and every newsgroup they have posted in The number of posts made
p

s
M

Table 2
Population size of each network in terms of community count, user count, and
elationship edge count, before compressing duplicate edges into weighted edges.
Platform Comms. Users Edges

Mastodon 3825 479,425 5,649,762
Penumbra 841 41,619 108,038
BitChute 29,686 299,735 11,549,058
Voat 7515 3,624,486 16,263,309
Usenet 333 2,080,335 58,133,610

Our disruption curve metric is intended for bipartite networks,
where communities are clearly distinguishable with ground-truth def-
inition and users can participate in multiple communities. However,
some consideration is also given to applying our metric to unipartite
settings in the synthetic network section.

We plot disruption similarly to a cumulative disruption function
(CDF), where the 𝑥-axis represents the number of communities re-
moved, cumulatively ordered by degree, and the 𝑦-axis represents the
fraction of edges from surviving users that have been cut. In other

ords, the 𝑥-axis is the size of 𝐴 as a fraction of all communities in
he graph, and the 𝑦-axis is 𝜕 𝑆∕|𝑆|, where both the numerator and
enominator are dependent on |𝐴|.

While disruption curves offer insight into the role of the largest
ommunities on a platform, some readers may desire a scalar summary

statistic to describe how ‘‘centralized’’ a platform is under our metric.
For these scenarios we recommend calculating the area under the
curve, as shown in Figs. 4(b) and 5(b). We calculate the Distruption

UC (DAUC) using a trapezoidal approximation in logarithmic space,
y re-normalizing the 𝑥-axis as:
log10(number of removed communities)
log10(total number of communities)

We measure in logarithmic space because most disruption curves
have a long tail: there is a significant impact as the largest communities
are removed first, which we are primarily interested in, and there is
typically less change to disruption as smaller communities are removed
later, especially once the giant component is fractured. Measuring in
linear space allows the long-tail to heavily influence the DAUC, while
measuring in logarithmic space emphasizes the role of the largest
communities.

For some synthetic networks it is possible to write a closed-form
integral for the disruption curve, but because this is not possible for
real-world data, we use a trapezoidal approximation for all real- and
synthetic-networks for consistency.

2.2. Mathematical analysis of disruption

We can analyze the expected behavior of disruption curves using
andom bipartite networks parameterized by their joint-degree distri-
ution. This approach fixes the distribution {𝑔𝑚} of users part of 𝑚

communities, the distribution {𝑝𝑛} of community size 𝑛, and the joint-
distribution 𝑃𝑛,𝑚. Beyond these constraints, we assume the networks to

be very large and fully random.

4 
We can calculate the expected disruption 𝐷(𝑛) involved when re-
moving communities of size 𝑛′ < 𝑛. Disruption is given by the number
of edges that belong to communities of size 𝑛 minus the fraction 𝑢𝑛 of
those that are the sole edge of the corresponding users (since these users
are removed in the pruning) divided by the number of edges belonging
to communities of size equal or smaller than 𝑛 minus the 𝑢𝑛𝑛𝑝𝑛 users
removed. We write:

𝐷(𝑛) =
𝑛𝑝𝑛 − 𝑢𝑛𝑛𝑝𝑛

∑

𝑛′≤𝑛 𝑛
′𝑝𝑛′ − 𝑢𝑛𝑛𝑝𝑛

.

Edges to comms. of size n Edges to removed users

Edges to comms. n or smaller

(1)

The quantity 𝑢𝑛 is defined as the probability that a random user of
a community of size 𝑛 has no community smaller than 𝑛:

𝑢𝑛 =
∑

𝑚

𝑃𝑛,𝑚
∑

𝑚′ 𝑃𝑛,𝑚′

⎛

⎜

⎜

⎝

∑

𝑛′≥𝑛 𝑃𝑛′ ,𝑚
∑

𝑛′ 𝑃𝑛′ ,𝑚

⎞

⎟

⎟

⎠

𝑚−1

.

Fraction of users in comm.
size n that have m edges

Fraction of users with m edges
in comms. larger than size n

(2)

In a simple experiment, we create a random Erdős-Rényi-like bi-
artite network and correlated equivalent networks with the same

degree distributions and variable community-user degree matrices 𝑃𝑛,𝑚.
The random network has a simple 𝑃 rand

𝑛,𝑚 ∝ 𝑛𝑝𝑛𝑚𝑔𝑚 (normalized).
We also calculate the maximally assortative 𝑃max

𝑛,𝑚 by assigning users
with highest degrees 𝑚max to the largest communities, and maximally
disassortative 𝑃min

𝑛,𝑚 by assigning users with the lowest degree to the
largest communities.

Using Eq. 1 on networks linearly interpolating between 𝑃max
𝑛,𝑚 , 𝑃 rand

𝑛,𝑚
and 𝑃min

𝑛,𝑚 , we find that positive user-community degree correlations in-
crease disruption and therefore centralizes the resulting socio-technical
network. Conversely, negative correlations decreases disruption and
decentralizes the network. We thus know that dispersion curves will
be affected by network structure beyond its distribution of community
sizes.

2.3. Real-world network data

We analyze five real-world datasets, each describing online social
interactions in bipartite configurations where vertices represent either
‘‘users’’ or ‘‘communities’’. We utilize a 2021 scrape of the Mastodon
follow graph [13]. Mastodon is a Twitter alternative where users are
located on one of thousands of ‘‘instances’’, which are Twitter-like
ervers with their own administrators and content policies. However,
astodon users can follow users on other instances, exchanging content

between the two communities, so long as the servers are ‘‘federated’’
(willing to exchange content). For a second example of a platform with
distributed servers, we include the Penumbra of open-source [30], a
data set of independent git servers (not GitHub or GitLab), and users
that contribute to repositories on each server. We also include an
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interaction graph from BitChute [31], an alt-tech YouTube alternative,
consisting of users and the channels (video uploaders) whose videos
they commented on. We utilize a similar scrape of Voat [32], an alt-tech
Reddit alternative active until late 2020, consisting of users and the
‘‘subverses’’ (subreddits) they commented in. We additionally include
an archive of Polish Usenet groups [33], providing a much older but
imilarly structured platform for comparison. Details on the vertex and
dge definitions for each network are included in Table 1, and the size
f each network is listed in Table 2.

We selected these platforms because they have clear bipartite user
and community representations, data is readily available, and each plat-
form is small enough to obtain a nearly-complete sample. Sub-sampling
a larger platform like Reddit may miss lower-population or lower-
activity sub-communities, and we are particularly interested in the in-
teractions between smaller communities. The resulting dataset encom-
passes a variety of approaches to hosting and community governance,
providing a spectrum of ‘‘centralization’’.

2.4. Ethical considerations

Any method for community detection, or the measuring of com-
munity ‘‘importance’’ (in our case, disruptive potential) in a social
context implies risk. A bad actor could use such a metric to identify
communities with the most reach in an effort to spread misinformation
more efficiently, or to identify the smallest set of content moderators
that must be influenced to enforce a desired social policy change across
a platform. However, the same methods can be used to preemptively
identify risk, allowing a platform like Mastodon to proactively take
steps to limit their dependence on their largest server instances, for
example by closing user registration on their largest instances, or by
de-prioritizing those servers on instance-recommendation websites like
. We believe the benefits of studying the structure of social media
outweigh the risks in this regard.

Concerning the datasets used in this paper, we present only aggre-
ate group behavior to provide insight into social welfare. We do not
ublish any usernames or study individuals’ behavior in-depth, and
resent only the names of some of the largest communities to help
ontextualize our findings. We believe this presents a minimal risk to
he privacy of users included in our five real-world datasets. Since
ur real-world data is sourced from prior publications, we are not re-
ublishing it with this study, but also do not have the opportunity to
urther anonymize user data.

2.5. Synthetic network data

To understand disruption curves and contextualize our real-world
results, we examine a variety of well understood synthetic network
opologies. Small visualizations of these types of networks are shown
n Fig. 2, and the methodology and parameters used in our experiments
re described in detail below.

First we construct a bipartite star network, as a default example of
 network centralized around a single hub. Bipartite Star networks are
nalogous to a unipartite star network with duplicate edges. Starting
ith a unipartite star, we replace each edge from the hub to a leaf
ith a two-path from the hub community to a new ‘‘user’’ vertex, to

he leaf community. Duplicate edges from the unipartite hub to leaves
re converted into multiple users that share a community, and serve
o break ties when pruning communities for disruption curves. In our
xample plots, we construct a graph with 150 communities and 3000
sers, such that every user has an edge to two communities: the central
ub, and one other, assigned uniformly. Removing the hub eliminates
0% of all edges, and removing any subsequent communities incurs no
dditional disruption, because all impacted users will have a degree
f zero and be pruned from the graph (see Fig. 5(a)). This graph

type is therefore highly centralized but has a decentralized periphery
after the removal of the central community, illustrating how different
5 
topologies can co-exist in the same network, muddying the definition
of ‘‘centralization’’.

We then test disruption on a variety of bipartite networks with
power-law degree distributions. We first adapt the Barabási-Albert pref-
erential attachment model to a bipartite setting, initializing a network
with 300 empty communities and introducing users that connect to
a given community with probability proportional to their size plus
one. We also introduce a range of bipartite configuration models: in
each, we assign a degree to each community drawn from a power law
with a specified 𝛾 exponent. For each community, we create edges
according to degree, connecting the community to users uniformly
randomly without replacement. Therefore, we control for the size of
communities, which follow a power-law distribution, but we do not
control for the degree of users, which follow a normal distribution,
nor do we control for assortativity. Each of these networks produces
a curve that slowly decays towards a diagonal, implying that removing
he largest communities has some disproportionate impact, after which
emoving additional communities has a less pronounced result.

We also adapt the Erdős-Rényi model to a bipartite setting by
creating vertices for communities and users, then creating all possible
edges with a probability 𝑝 (in our tests, 𝑝 = 0.05), while preserving
the bipartite constraint. These networks produce a disruption curve
with a second derivative near zero, indicating that most communities
have near-equal influence on the population, and so removing the
largest communities does not have a much larger impact than removing
subsequent communities.

Lastly, we create a bipartite Watts–Strogatz small-world model. We
begin by producing a unipartite network with desired neighborhood
size (𝑛 = 5) and edge density (𝑝 = 0.05) parameters. We apply a
clustering algorithm (in our examples we used weighted community
label propagation) to place each user in one community, we create a
vertex for each detected community, and we replace all user-user edges
with user-community edges. These networks have the most uniform
community size distribution of any we tested, and their disruption
curves are similar to those of Erdős-Rényi networks, with slightly more
variability. By applying community detection, as discussed here and
illustrated in Fig. 3, it is possible to measure disruption in unipartite
networks as well as bipartite.

3. Results

We plot the cumulative population size, disruption curve, and dis-
uption AUC for real-world networks in Fig. 4, and plot the same results

for synthetic network data in Fig. 5. We first focus on discrepancies
between the size distribution and disruption curves for real networks,
then return attention to synthetic network data when we examine the
role of assortativity.

3.1. Comparison to size distribution

Upon comparing the size distribution and disruption curve in
Fig. 4(a), it is apparent that the community size distribution is in-
ufficient to describe the structure of a network. Voat has the most
kewed population distribution: almost all users participate in the
argest community, yet removing the largest community impacts less

than 0.03% of the remaining graph, and only after removing the
largest three communities is more than 10% of the graph impacted.
Mastodon and BitChute have the next most skewed size distributions,
but there is a large distance between the proportional sizes of their
largest communities, and almost identical disruption curves as those
communities are removed. By population distribution, the Penumbra
appears to be more skewed towards its largest git servers than Usenet
is towards its largest newsgroups. This is not mirrored in disruption
curves, where Usenet has a consistently higher disruption than the
Penumbra.



M.Z. Trujillo et al.

a
c

a

Online Social Networks and Media 43–44 (2024) 100292 
Fig. 2. Example visualizations of synthetic bipartite networks. The near-star approximates a star-graph, but in a bipartite configuration where each node participates in the ‘‘hub’’
nd one other community. Bipartite ER is an Erdős-Rényi graph adapted to a bipartite setting. A bipartite Watts–Strogatz model produces a ‘‘small-world’’ graph where each
ommunity is close by path length to each other (see also Fig. 3 for more detail). Power-law networks vary from high heterogeneity at low 𝛾 where one community is much

larger than others, to low-heterogeneity at high 𝛾 resembling an Erdős-Rényi graph. For brevity, a visualization of the Barabási-Albert model, an alternative preferential-attachment
scheme, is excluded.
Fig. 3. Example of applying our disruption metric to unipartite graphs by detecting communities on a unipartite small-world network (top-left), converting labeled communities
into a bipartite representation (top-right), and running our influence metric on the bipartite graph (bottom).
To explain these discrepancies, we examine each network in greater
detail. Voat was a Reddit-like platform where users commented and
posted in one or more ‘‘subverses’’. While users chose to subscribe from
mong 7515 public subverses, new accounts were automatically sub-

scribed to a set of 27 subverses by default. This ‘‘default subscription’’
has no parallel on other platforms we examined. Since these default
subverses have an automatic population, they are more likely to receive
engagement than subverses that must be discovered according to a

user’s area of interest, and we may expect them to be densely connected

6 
with most users on the platform. However, the largest two subverses on
Voat by number of unique users were not default subverses; v/QRV was
a QAnon conspiracy group, and v/8chan was a right-wing news and
discussion forum whose name references the white supremacist image-
board 8chan (now ‘‘8kun’’). Both subverses were highly insular, with
little population overlap with the rest of the platform, as illustrated in
Fig. 6. Therefore, it is only when we remove the third-largest subverse,
v/news, that we see a large impact on remaining users on the site.
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Fig. 4. Summary measures of centralization. (a) The population distribution of communities (top) does not correlate with our measure of community disruption (bottom). (b) The
area under the disruption curve (DAUC) provides a summary statistic of the disruption curve that reinforces how network structure combined with community size provide greater
insight into centralization. Note that while panel (b) provides some insight in to how ‘‘centralized’’ a network is, it fails to capture the nuance of panel (a), such as the minimal
effect of removing Voat’s largest community. Panel (a) consists of cumulative distribution plots of population and disruption, where the top subplot is a CDF of the platform
population as smaller communities are included, and the bottom subplot shows how networks are damaged as more of the largest communities are removed. Each line represents
a different network, using the color key from panel b.
Fig. 5. In simulated networks with a variety of degree distributions, the disruption curves for each network much more closely match the population distribution (Fig. 5(a)),
suggesting that non-degree network attributes such as assortativity play a crucial role in determining centralization. As in Fig. 4, the left figure represents cumulative population
and disruption as more communities are considered. Each line represents a network sharing the color-key in the right figure. Simulated networks were generated 100 times, and
the mean and a 95% confidence interval are shown in both figures. The number of communities is fixed at 150 during network generation for most simulated networks, except
for clustered Watts–Strogatz, where such control is impossible. Therefore, all lines start at the same point on the 𝑥-axis except for WS and the reference Mastodon line.
The Penumbra of open-source represents software development on
git servers outside of GitHub and the primary GitLab instance. Each
community represents a git server with one or more public repositories,
and edges indicate that a user (identified by email address) contributed
to a repository on a server. Servers are often created per-organization;
for example, the Debian Linux distribution hosts their own GitLab
server at . Users often contribute to multiple repositories on a single
server, but connections between servers are extremely sparse. This
sparsity is responsible for the ‘‘spikes’’ in the Penumbra’s disruption
curve; removing a git server may sever an edge to some users, and
removing a second, related server may prune all remaining edges
to those same users. When the cross-server collaborative users are
removed, the impact on the remaining less-collaborative community
decreases. In all other networks enough users have a sufficiently high
cross-community degree that disruption only increases as communities
are removed.
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3.2. Comparison to giant component size

Rather than examining the cumulative community size distribution,
one could instead examine the size of the giant component of each
network. The giant component will shrink as communities are cumu-
latively removed, providing another means of examining the influence
of large communities.

We illustrate this cumulative shrinking in Fig. 7. Most curves are
smooth until the tail of the distribution, with two notable exceptions:
Voat’s giant component changes once the largest insular communities
are removed (see Fig. 6), and the Penumbra’s curve is much ‘‘spikier’’
as a result of its highly sparse structure.

Measuring the change in giant component size captures some of
the same features as our disruption metric. In particular, removing
large insular communities may not change the giant component size
if the community is completely isolated from the giant component.
However, the impact of a community is boolean: if it touches the
giant component, then removing the community will shrink the giant
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Fig. 6. In this projection of inter-community links on Voat, most of the platform is an amorphous hair-ball, but the overall conclusion is clear: The two largest Voat communities
(‘QRV’ and ‘8chan’) are dramatically larger than their peers, but have almost no overlap in population, making community size a poor proxy for platform-wide influence or
centralization. In this network visualization, nodes represent Voat ‘‘subverses’’, and edges represent at least thirty shared users active in two communities. Node size correlates with
user count, and color correlates with strength; i.e. the level of overlap with neighboring communities. The purple communities at the center are default subverses all new users
are subscribed to (‘‘news’’, ‘‘whatever’’, etc.), surrounding pink and orange communities are popular with lots of user overlap. The largest two communities, ‘‘QRV’’ and ‘‘8chan’’,
have almost no user overlap with other communities and are rendered to the right.
Fig. 7. The giant component shrinks as communities are pruned from largest to
smallest, indicating both the size of a community and whether it was part of the
giant component before pruning. However, this boolean inclusion does not account for
how well-integrated the community was among its peers. The 𝑦-axis is normalized as
a fraction of the un-pruned giant component size, such that ‘‘0.5’’ indicates the giant
component is half the size of the original.

component by the size of that community. There is no distinction
between a minimally integrated and tightly integrated community.
Measuring the impact of a community in terms of fraction of edges
severed, rather than component vertex size, offers finer insight into the
interplay between size distribution and network structure.

3.3. Comparison to network bottlenecking

The Cheeger number [23] is a single-valued metric representing
how large of a ‘‘bottleneck’’ inhibits conductance across a graph. It
is a minimization problem that seeks to divide vertices into two large
clusters with a small number of links between them, which is similar
to maximizing two-partition modularity. It is typically written as:

min

⎧

⎪

⎨

⎪

⎩

|𝜕 𝐴|
|𝐴|

∶ 𝐴 ⊆ 𝑉 (𝐺) , 0 < |𝐴| ≤ 1
2
|𝑉 (𝐺)|

⎫

⎪

⎬

⎪

⎭

Edges crossing the boundary of A

All edges in+across A

A is a subset of vertices of G

(3)
A contains at most half of all vertices
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Graph conductance is a global search that measures how similar a
graph is to a ‘‘barbell’’, where a small score indicates large communities
with few edges across the bottleneck. We are also interested in the
size of the bottleneck created between large communities and the rest
of a platform, where a large bottleneck and low number of edges
among ‘‘surviving’’ users indicates high disruption. However, while the
Cheeger number is a community-search algorithm, the communities
in our bipartite social-network setting are predefined, and we are
interested specifically in the size of the bottleneck for surviving users
when the largest communities are removed. Our partition selection is
bipartite-aware, such that 𝐴 includes all the largest communities we
are pruning, and all users that only have edges to those communities.
Additionally, while the Cheeger number returns a single value for the
most ‘‘barbell-like’’ partitioning the graph can achieve, we are inter-
ested in the cumulative effect of pruning more and more communities
as a means of identifying oligarchic patterns in a network.

Unfortunately, evaluating the graph conductance of all possible
subsets of vertices is an NP-hard problem [34] such that it is impractical
to directly measure the Cheeger constant on most large graphs. The
Cheeger inequality offers upper and lower bounds on the Cheeger
number based on the second eigenvalue of the normalized Laplacian
of the adjacency matrix, but in our tests these bounds were too wide
to offer insightful comparison.

3.4. Assortativity and centralization

High degree disparity is not enough to create a network as cen-
tralized as Mastodon. When we control for degree distribution using a
variety of ‘‘centralized’’ models including star networks and power-law
distributions we cannot achieve more than 50% disruption (Fig. 5(b)).
To achieve higher disruption you must have duplicate edges, repre-
senting for example a Mastodon user following many accounts on the
same server. Therefore, we expect that degree assortativity (or degree-
degree correlations) plays a significant role in the differences between
observed community disruption (Fig. 4(a)) and network behavior under
controlled degree distributions (Fig. 5(a)). In a purely random setting,
users are likely to have edges to multiple large communities, because
most edge stubs in a configuration model come from high-degree
communities. In real social settings, the content of communities may
inhibit assortativity, as in Voat, where the largest two communities
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Fig. 8. Rewiring edges to introduce randomness and tune degree-degree correlations. The 𝑥-axis corresponds to the expected number of times an edge has been swapped to increase
assortativity (positive x-axis) or decrease assortativity (negative x-axis) In most social graphs, any such perturbation leads to a decrease in centralization, regardless of the sign of
the change in correlations. In other words, introducing randomness has more impact than changing user-degree to community-degree correlations. There are two exceptions to this
rule: in Voat, the two largest communities are highly insular, and so increasing degree assortativity connects these communities and initially increases disruption. Conversely, the
Penumbra is extremely sparse, and increasing degree assortativity cuts the few inter-community edges, lowering disruption further. Decreasing assortativity makes well-connected
users less likely to connect to the largest communities, reducing their role and minimizing the ‘‘rich-get-richer’’ dynamics common to social media. However, in the sparse edge-case
of the Penumbra, such rewiring better connects the more populous servers with their smaller peers, increasing disruption.
are highly insular (see Fig. 6), creating a large disparity between the
community size distribution and disruption metric.

To explore this hypothesis, we randomly rewired each social net-
work and used this as an opportunity to tune their assortativity. We
select pairs of edges uniformly without replacement, and can swap the
communities of the edges if doing so would increase or decrease user-
community degree assortativity as desired. We continue this process
until we have rewired a target percentage of edges; if we exhaust the
edge supply before finding sufficient valid swaps, we re-shuffle the edge
list and continue drawing. For each rewired network we calculate its
disruption and the area under the disruption curve, as in Fig. 4(b), and
plot the change in AUC during rewiring in Fig. 8.

The results of Fig. 8 highlights two important results. First, most
networks are at their most centralized without any rewiring whatsoever
(Mastodon, BitChute, Usenet) or when very little assortative rewiring
is applied (Voat). The Penumbra dataset is the only network whose
centrality can actually increase under random rewiring. This leads us
to our second point which is that the strength of the decentralizing
effect of randomness depends on the sign of the correlations introduced.
This effect is subtle however, with negative correlations centralizing
the Penumbra dataset and positive correlations centralizing the Voat
dataset. Unlike the previous mathematical experiment from Eq. 2 which
assumes a random infinite network, the finite size of real networks
means that correlations can help a user focus their activity on a
single community. This mechanism can help us understand the complex
role of correlations and some interesting features of individual DAUC
curves.

Further exploring correlations in our experiment is useful in dis-
tinguishing the idea of network centralization from classic ideas of
monopoly. These are two different, but related, problems that are
easy to confuse when focusing solely on summary statistics like com-
munity size distributions. When a network consists of disconnected
communities, it is decentralized under the disruption metric regardless
of the size distribution of these communities. This conclusion follows
from our definition of centralization since removing a community in
a sparse (or disconnected) network, has little (or no) impact on other
communities. This rewiring experiment highlights this logic: As net-
works get rewired to increase correlations, we increase the likelihood
of having all the activity of a user focused on a single community
and therefore progressively disconnect the community and decentralize
the network. The only exception is Voat, whose initial state contains
large disconnected communities that can get coupled to the rest of the
network by rewiring, before being re-disconnected as we rewire more
and more. Small correlations in large networks can therefore increase
9 
centralization, since large communities can broker more bridges when
they contain well-connected users; while strong correlations in smaller
networks can decrease centralization by focusing user activity on single
communities.

There are multiple interpretations of degree assortativity in a bipar-
tite setting. The linear correlation between user degrees and community
degrees measures whether high-degree users are likely to be con-
nected to high-degree communities. In our network definitions edges
represent activity, like follow relationships or participation in conver-
sations, so this measures whether active users are likely to be connected
to communities with lots of activity. A second metric of interest is
whether large communities are likely to be connected to other large
communities, or the assortativity of a unipartite-projected community-
community graph. This can be broken into two sub-cases: assortativity
of community size (do communities with many users share users with
other high-population communities), and assortativity of degree (do
communities with lots of activity share users with other high-activity
communities). These three notions of assortativity may correlate if high
community population correlates with high activity, but this is not
guaranteed, so the three metrics should be measured separately.

While rewiring to promote user-community degree assortativity we
also plotted the changes in community-community degree assortativity,
shown in Fig. 9. Strikingly, the community assortativity decreases as we
rewire to promote user assortativity. This is because as we rewire edges
to focus user connections on the largest communities we implicitly
decrease the number of edges between communities. This also matches
the changes in disruption in Fig. 8: increasing assortativity may recon-
nect large and insular communities with the rest of the network, briefly
increasing their influence, but continued assortativity rewiring also cuts
bridges to and between smaller communities, yielding a sparse network
that is far less centralized.

4. Conclusion and future work

We have added to the wealth of centralization metrics by proposing
a mesoscale measurement that indicates how much influence one sub-
community has over a broader network, by accounting for how many
edges to remaining users would be severed if a community were re-
moved. This metric allows us to differentiate between networks with a
substantial community size-imbalance, and networks where the largest
communities play a core structural role in their smaller peers. We ex-
tend our metric to create a graph-level measurement that indicates how
‘‘oligopic’’ a network is, or how well-integrated its largest communities
are with the population at large.
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Fig. 9. Rewiring to increase user-community degree assortativity (left) decreases the projected community-community degree assortativity (middle) and community-community
population assortativity (right).
V
t
o
C

t
M
I
c
a

O

We assert that a more nuanced measurement of community in-
fluence, accounting for both size distribution and structural role, has
utility for content moderation and administrative transparency. Iden-
tifying communities on a platform with disproportionate influence
can help moderators and administrators limit that influence through
changes in content recommendation and integration. Conversely, iden-
tifying large communities with lower influence than expected can aid in
detecting a large influx of external users, as in the QAnon communities
on Voat. Furthermore, third party analysis of community influence can
reveal when platform administrators overstate claims of decentraliza-
tion and community self-governance, understating their own control
over and responsibility for a platform.

We have utilized our disruption metric to examine a range of real-
world social networks, comparing their network topology, distribution
f community sizes, and the influence of those communities. We find

that some platforms, like Voat, are much less centralized than their
kewed community-size distribution would suggest, while others, like
senet and the Penumbra of Open-Source, have similar size distribu-

ions and widely divergent disruption curves. Mastodon, while vocally
upportive of decentralization, has a disruption curve mostly character-
zed by the skewed population distribution of its sub-communities and
s in fact more centralized than any other real or synthetic network
onsidered in this study.

Using simulated networks with a range of degree distributions,
nd rewiring techniques to adjust assortativity, we have begun to ex-
lore the interplay between community size, structure, and community-
evel centralization. However, we limited ourselves to traditional net-
ork generative models like Erdős-Rényi and power-law configuration
odel networks. Future research could directly simulate networks with

himeric centralization which combine decentralized and centralized
omponents to more realistically represent the diversity observed in
ocial networks.

Our network representations are oversimplified in that we assume
that each edge on a network represents a path of information flow.
However, one user following another represents potential information
flow; a bridge between two communities is only realized if the follow-
ing user is online and chooses to propagate information from the edge
to their own followers and instance.

More thorough research should examine how many potential
ridges are utilized by, for example, monitoring the number of ‘‘boosts’’
Mastodon’s equivalent to ‘‘retweets’’) across instance boundaries on
10 
Mastodon. Observed information spread, and examining the recep-
tion of cross-pollinated ideas in non-originating communities, would
provide much greater insight into how multi-community platforms
function in practice.
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