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Abstract

This project defines a social organization mathematically in terms of
communication costs, constraints, and objectives. This allows one to
solve for an “optimal” organization, and begins to answer questions of
why hierarchies forms, and why some hierarchical structures are more
advantageous than others.

1 introduction

Consider an organization consisting of “agents”, and the “environment.”
Agents may either listen to other agents, or the environment, to gain in-
formation. They may speak only to other agents in order to forward their
information.

We assume that all communication has two costs: the speaker must put
effort in to express themselves clearly, and the listener must put effort in to
paying attention to the speaker. In the case where an agent is listening to the
environment, the environment has no speaking cost, but the agent still has
a cost to observe the environment clearly. Speaking is much cheaper than
listening, in that a speaker can address an entire group, but listeners must
listen to each speaker.

Agents can collectively distribute information through the organization
through a series of speaking and listening interactions. This can be de-
scribed as an optimization problem, where we seek to maximally distribute
information, while minimizing communication costs. Many variants of this
optimization problem exist, depending on the size of the organization and
environment, the cost of interactions, and the objectives of individual agents.

2 model

In this model, there are N agents, indexed by i = 1...N. There are also K
random variables representing the state of the environment (θ1...θk). Each
agent can observe either environment variables or the output of other agents.

Each agent is described in terms of three vectors, called “listen weights”,
“state weights”, and “speaking weights”. These vectors respectively represent
how carefully the agent listens to each other agent or environment node,
how it translates its observations in to an action or “state”, and how how it
translates its observations in to a message it can send to other agents.
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2.1 Receiving Observations

Let Ei be a 1 x (N + K) row vector, representing the information the agent
receives. The observations of agent i are then given by:

Oi = Ei + Wi �N e
i (0, Σe

i )

Here, Wi is a 1 x (N + K) row vector of the form ( 1
w1

, 1
w2

, · · · , 1
wN

) that
represents the “listen weights”, or how agent i allocates its attention to each
observation.

The term N e
i (0, Σe

i ) is a 1 x (N + K) vector of normal random variables
with standard deviation Σe

i . This term represents “random noise”, where a
higher standard deviation indicates more attention is needed to overcome to
noise and reproduce signal.

The � represents element-wise multiplication. Therefore, the observa-
tions agent i receives are equal to the information it receives (from its own
observations or messages from other agents), corrupted by noise that is
countered by the attention agent i allocates to the observation. In short,
listening can be thought of as a Gaussian channel, where the listener can
reduce noise by allocating more attention to the speaker.

2.2 Choosing an Action

Given what agent i observes, Oi, agent i’s action is given by:

Ai = OiXi

Here, Xi is a (N + K) x Di matrix. This means that Ai is a 1 x Di row
vector. More abstractly, this means that agent i can take Di different actions,
where the action is chosen by multiplying observations by a “state weight
matrix” Xi.

2.3 Sending Messages

Given agent i’s observations Oi, what agent i says is given by:

Mi = OiΩi +Nm
i (0, Σm

i )

Here, Ωi is a (N + K) x Fi matrix and Nm
i (0, Σm

i ) is a 1 x Fi vector of
normal random variables. That means Mi is a 1 x Fi vector.

Abstractly, Fi represents the number of distinct messages agent i can
say, Ωi is a matrix translating from observations to outgoing messages, and
Nm

i (0, Σm
i ) represents the noise when sending messages.

2.4 Optimization Problem

The exact details of the optimization will vary depending on the type of
social organization being modeled. However, most optimization will follow
a similar form, outlined here.

For convenience, let Ω = [Ω1, Ω2, · · · , ΩN ], X = [X1, X2, · · · , XN ], W =
[W1, W2, · · · , WN ], and A = [A1, A2, · · · , An].

The welfare of the model can now be defined as:

F = U(θ, A)− ||Ω||d − ||W||d

Here, ||Ω||d and ||W||d represent the Ld norm of each matrix, and U
is a function comparing the action of each agent to the environment state,
determining how far from optimal the agents’ actions are.

Intuitively, F is a trade-off between accuracy of information distributed,
and the cost of distributing information.
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The optimization problem can now be written simply as:

max
Ω,X,W

F

3 methods

We implemented the above model as a neural network, where the network
can train the listen, state, and speaking weights of each agent. In our first
simulation, we tasked each agent with getting an estimate of the average of
all environment nodes. That is, information about each environment node
must be distributed through the entire group, and the “action” of an agent is
its estimate of the average environment.

The interpretation of this network is somewhat unusual, in that with
most neural networks one cares about the output, or how the network
approximates some function. The links between nodes in the network are
traditionally ignored, or may even be unintelligible in a deep neural net with
hidden layers. By contrast, we do not care about the output of the network
(which determines only how well it is performing), but instead focus on the
edges between nodes, which describe the communication structure of the
modeled organization.

The resulting network can be rendered for human-viewing as a directed
graph, with vertices representing agents or environment variables, edges
describing information flow from one agent to another, and edge weights
describing the listening weights for those connections. For any edge weight
below a threshold, we do not include an edge and say the agent is “not
listening”. This cutoff threshold is largely arbitrary, and is based on the level
of noise, and therefore, average edge weight magnitude.

There are many local optima for social organizations, and several strate-
gies are necessary to find the global optima. For each training iteration we
evaluated with 1000 sets of random data for the environment values, we
repeated training with several different algorithms (the most successful were
Adaptive Delta Gradient-Descent and Root Mean Square Propagation), and
restarted each trial multiple times with different seeds.

Note: While the mathematical model supports agents with multiple actions (Di)
and messages (Fi), our implementation only has a single action and message per
agent. This makes reasoning about results simpler, but introduces limitations that
will be addressed later.

3.1 Implementation Caveat

In most neural network software, communication must be acyclic. That is,
agent 1 cannot listen to agent 2 if agent 2 also listens to agent 1, since this
creates a circular dependency. To remedy this problem, we define each agent
as having multiple layers. The first layer of each agent is permitted only to
listen to the environment. The second layer is permitted only to listen to
the output of agents in layer 1. Each agent includes the observations of its
counterpart in the layer below it in its own observations without noise or
listen weights.

An arbitrary number of layers may be used, following this pattern. In the
above mathematical model, we coalesce the layers of the agent in to a single
agent i for convenience. As a result, all agents may listen to all other agents,
and the environment, effectively making Oi a 1 x (N + K) matrix.

This is not an over-simplification, as the welfare of the model relies only
on the actions of the outermost layer, and the listen and speaking costs of
all layers, which will be correctly described by the mathematical model. The
actions of intermediate layers may safely be ignored.

This caveat means there are two ways to view the resulting network: as an
acyclic graph that shows the steps in the conversation between agents, or as
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a “collapsed” and potentially-cyclic graph, which describes the interactions
of an entire agent rather than a single layer of that agent.

3.2 Objective Variants

In addition to the trivial “average all environment nodes” objective, we
created a number of alternative welfare functions to emphasize different
aspects of human organizations.

1. Selfish

In a human organization, one person doing 100 units of work is not
equivalent to two people doing 50 units of work each. To disincen-
tivize unnatural organizations where one person does all the work and
distributes their answers to the rest of the group, we made the cost of
listening to the environment exponential per agent. That is, there is
now an incentive to distribute the labor of listening to the environment.

2. Robustness

For long-lasting organizations, single points of failure should be avoided.
In a human community, that single point of failure may get sick or be
fired. In a computer network, that central system may crash. In this
model we create N + 1 versions of the network - one normal, and N in
which one agent has been disabled and sends no messages.

Listen weights are consistent across these parallel network versions,
but state and speaking weights may vary. For a real-world scenario,
consider a company where “Fred” has just been fired. The rest of the
organization cannot instantly schedule alternate meetings, restructure
the hierarchy, and replace Fred, but they can stop waiting for any
information they were supposed to receive from him.

The total welfare of the network is the sum of the welfare for each
version. This means an optimal network will have no single points of
failure, so each version of the network will perform satisfactorily.

3. Binary Goals

In this model, half the agents are responsible for calculating the aver-
age of even environment variables, and half are responsible for odd
variables. These varied goals mean a single information hierarchy is no
longer optimal, since it would involve many unnecessary connections.

4 results

4.1 Trivial Objective

In the average-all-environment trials we see many “funnel” structures, where
a single agent monitors all the environment variables, summarizes them,
and distributes that information to all other agents. This minimizes the total
number of edges in the graph, and means there is only a single speaker,
lowering costs drastically.

A0

E0 E1 E2

A1 A2 A3

The funnel structure
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As we increase the cost of listening or speaking to other agents we see
a spontaneous shift where it becomes cheaper for all agents to monitor the
environment directly, and they cease speaking to one another. Adjusting
other variables (number of environment or agent nodes, or randomness of
the environment state) has no effect, although increasing the cost of listening
to the environment eventually leads to a critical scenario where it is cheaper
to listen to nothing, and suffer the welfare consequences, then to observe the
environment and get the right answer.

4.2 Selfish

In the selfish model, there is an incentive not to put all of the environment
load on a single agent. Instead, we see distribution of labor leading up to a
funnel in the middle layer of communication.

E EE E E

A00 A10 A20 A30 A40

A01 A11 A21 A31 A41

A02 A12 A22 A32 A42

Distributed labor example

Otherwise, the model is nearly-identical to the trivial objective, except
that the cost threshold for switching all agents to reading the environment
directly is much higher.

4.3 Robustness

In the robustness trials there is an incentive not to have any single critical
nodes, making the funnel structures from the trivial and selfish objectives
unlikely. Instead, unsurprisingly, we see two funnels (highlighted below), so
either can fail with no ill-effects.

E E E EE

A00 A10 A20 A30 A40

A01 A21 A31 A41A11

A02 A12 A22 A32 A42

Robust two-funnel example

In the above example, all agents receive their estimates in layer 1, from
agent 1. However, if agent 1 is removed, agents will still receive estimates in
layer 2, via the redundant agent 2 funnel.
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4.4 Binary Goals

Giving agents different goals yielded disastrous consequences. The welfare
of the network fluctuated heavily, and the neural network produced no viable
organizations. It appears that the Neural Network lowered all listening
weights to near-zero to minimize costs, and agents proceeded to randomly
guess at the environmental average by sampling the noise on the channels
with minimal listen weights.

There are a number of potential explanations for this behavior. Since the
organization begins with all agents listening to all environment variables,
the “default” listen and speaking weights will create outgoing messages that
combine information about all environment variables. This makes messages
worthless for agents that only care about half of the environment.

Unfortunately, this theory does not explain why agents would not listen
to the appropriate environment variables themselves. It is conceivable that
since all the environment variables are drawn from a normal distribution
centered on the same mean, there is no clear positive feedback to increasing
listening weights for useful variables or decreasing weights on irrelevant
variables. However, this only satisfies why agents would listen to the wrong
variables, not why they would cease listening to the environment altogether.
We continue to investigate this scenario.

4.5 Parameter Sweeps

In addition to developing the above models, we sought to find a quantifiable
correlation between different communications costs and optimal structure
types. To crudely describe the hierarchy developed, we rely on a measure
of Global Reaching Centrality [4]. In layman’s terms the GRC measures how
far most agents are from the most connected agent, such that a low GRC is
extremely unbalanced (one agent is much more connected than the others),
and a high GRC is extremely balanced (all agents have a similar centrality
score).

We conducted a parameter sweep, increasing the inter-agent message
listening costs, environmental listening costs, and speaking costs, and mea-
sured the GRC of each generated network. These costs were adjusted by
increasing the standard-distribution of noise for difference types of com-
munication, thereby requiring a higher listen or speaking weight to convey
information.
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The most efficient model for a low listening cost network is the “funnel
structure”, where one agent listens to the environment and synthesizes
information, reducing costs for all other agents. However, as we increase the
cost of listening to other agents the funnel network becomes cost-ineffective,
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and agents switch to reading the environment variables directly. When this
occurs all agents have the same centrality score, since none are speaking to
one another.
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Increasing the environmental listening cost further centralizes the net-
work, by providing an added incentive to avoid duplication of labor. This
guarantees a funnel structure, unless the environmental cost is so high that
all agents cease listening to the environment (not pictured above).
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Increasing the speaking cost has an almost identical effect to increasing
environmental listening costs. In both cases there is an incentive to centralize
work to a single agent, so only that agent needs to speak. The speaking cost
graph differs slightly from environmental costs because speakers can address
all other agents at once (a one-to-many connection), while listeners must
listen to each speaker individually (one-to-one connection). This means that
with the same level of noise on listening or speaking, speaking will always
be cheaper.

Increasing the speaking cost to an extreme has the same effect as a high
message listening cost: The agents cease speaking to each other and read
from the environment directly.

5 conclusion

Early experiments have been successful in making information flow graphs
with minimal waste. When given inhibiting constraints, like a high cost
to centralizing work, or a penalty for single points of failure, our neural
network succeeded in designing optimal flow graphs with distributed labor
and no single points of failure.
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There is considerable work to be done with more complex scenarios, such
as only requiring that the leaders of the organization receive specific infor-
mation, or having leaders make decisions which must then be passed down
through the organization. Some of these scenarios have been investigated
by other researchers [2], but most research has focused on the effects of
hierarchy rather than the communications constraints leading to hierarchy.

There are also many ways to expand our parameter sweeps. The Global
Reaching Centrality is a non-ideal measurement, since a fully connected and
fully disconnected network will have the same GRC, and the centrality of an
agent does not capture some interesting phenomenon, such as a hub-agent
with few connections that is critical for passing information. Future work may
use measurements like Betweenness Centrality or Information Centrality [1]
to better describe network structure, particularly for non-intuitive objective
functions like robustness. These measurements need to be adapted, since
many assume a single layer network, or handle multi-stage networks by
either flattening the stages or treating each stage independently. Fortunately,
there is some research in this area [3].

In addition, there are several limitations to reducing social organizations
to information-flow diagrams. Our model leaves no room for differences in
the personalities of agents, or constraints on the design of the organization
imposed by outside rules, such as corporate tax law, or anti-union regulations.
However, we believe this research will show there are fundamental benefits
to specific hierarchies, and that these hierarchies will emerge “organically”
without planning, as a consequence of information and labor constraints
alone.
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