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ABSTRACT

Information Cascades are propagation patterns in human networks where information such

as political propaganda, rumors, or fashion trends, emanate from one or more starting points

and are either accepted or rejected by each connected member of a community. The deci-

sions made by individuals either govern a large ripple through the community, or prevent

significant changes from occurring, making Information Cascades of avid interest within eco-

nomics and network science. Since Information Cascades have similar behavior to the well

studied field of epidemiology, many Cascades are modeled with disease propagation models

like the Susceptibility, Infection, and Recovery (SIR) model. In this thesis we argue that

such generic models are insufficient for predicting information spread in human behavioral

networks, because they do not represent temporal availability of communication and indi-

vidual variations in susceptibility to peer-pressure. We propose a new model wherein agents

have heterogeneous activity periods and activation thresholds, representing individual sus-

ceptibility to peer-pressure. By applying this model to networks with a range of topologies,

as well as real-world networks, we are able to more accurately represent human behavior in

a variety of communities.
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CHAPTER 1

INTRODUCTION

1.1 Background

Global Cascades are substantial propagating changes throughout a network triggered

by small initial perturbations [1]. These cascades can describe a wide variety of physical and

social phenomena, from rippling failures in an electrical grid [2], to waves of stock-market

sales [3], and the spread of computer viruses [4]. Studying cascades has the potential to

predict and influence behavior in a number of systems, from limiting the spread of infectious

diseases to promoting the dissemination of information. In this thesis we model information

spread in human social networks, with particular consideration for individual susceptibility

to peer pressure and individual activity patterns. We examine cascades starting from both a

single point, as in most previous studies, and cascades starting from several random or chosen

locations, better representing behavior in information campaigns such as advertisement and

propaganda. We study cascade behavior across a variety of network topologies, endeavoring

to better understand the role of community structure in information spread, and the interplay

between community structure and individual behavior.

In a social interaction network, agents communicate with their neighbors to pass in-

formation. In most previous studies, the network topology is often assumed to be fixed [5],

and the behavior patterns of each agent are assumed to be homogeneous. In these models,

agents have a fixed susceptibility to new information based on pressure from their neighbors,

and over time may be “infected” with information (terminology inherited from academic lit-

erature on epidemic modeling, such as the Susceptibility, Infection, and Recovery model [6]),

and begin propagating information to their neighbors [7]. Assumptions about homogeneous

agent behavior and fixed social relationships are unrealistic in real-life scenarios leading to a

need for models that are more heterogeneous. In some engineered systems, this heterogene-

ity can be directly measured, such as in the fault-tolerances of relays in an electric-grid [2].

Human behavior in networks is more challenging to quantify and measure, but it is widely

accepted that people have varying susceptibility to peer pressure and differing levels of social

activity.

More recent studies account for heterogeneous behavior in human networks, focusing

1
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on network topology [8], individual susceptibility to information [9], and time-based activity

periods [10]. For instance, Crucitti, Latora, Marchiori, et al. [8] tested network robustness

to intentional and accidental damage on random and scale-free (SF) networks. Li, Wang,

Sun, et al. [11] represented individual heterogeneity as different probabilities of leaving the

network in the event of cascading crashes, and show that changes in this individual behav-

ior greatly change the system behavior in network collapses. Watts [9] provided a simple

quantitative representation for heterogeneous susceptibility to influence: each agent is given

a susceptibility level we call an infection threshold1 from a normal distribution, representing

individual personalities. Notably, this model assumes information susceptibility is based

solely on the number of affected peers and does not consider some peers to be more influ-

ential than others, nor does it consider the possibility of agent susceptibility changing over

time.

Other studies consider the effect of time on network structure. Holme and Saramäki [12]

introduced a concept of temporal networks, where edges are active only at specific periods.

Belykh, Belykh, and Hasler [13] created temporal networks that add and remove edges

while maintaining small-world network characteristics, which could be used to model social

communities restructuring over time. By contrast, Akbarpour and Jackson [10] proposed a

subclass of temporal networks with a fixed topology describing social behavior. In this model,

edges representing social interactions are constant, but may only be enabled during particular

activity periods, representing activity patterns such as a workday or school schedule.

Gomez-Rodriguez, Leskovec, and Schölkopf [14] develop an alternative contagion-inspired

methodology where the network topology is not known before simulation. Agent infection

is observable as the information spreads, but the route of spread (edge between agents) is

unknown, meaning individuals are unaware of where they first learned information from.

The researchers attempt to predict the edges of the network based on infection, and infer

which links impede or facilitate information spread. This is similar to real-world studies on

communities with publicly identified members, but obscured social ties and hierarchies [15].

Sobkowicz [16] creates an artificial social network model where leaders have dispropor-

tionate influence on the beliefs of their followers. The authors later extend this study to

create an opinion dynamics simulation based on real-world data from Polish politics [17].

1In previous related papers this is called an “activation threshold”. We rename the term to avoid confusion
with the similar terminology “activity period”
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Galam [18] creates an alternative model representing opinion dynamics in two-party

competitive politics. In their system, small groups meet to discuss politics, and change their

political alignment based on the majority opinion in the group. Agents have heterogeneous

collaborative behavior, and can either conform to the majority opinion, remain inflexible

regardless of majority, or reject the group opinion as contrarians. By creating many of

these group interactions over time, a political party’s dominance spreads through the larger

community, ending in their opinion spreading throughout the majority of the network.

Other researchers such as Borge-Holthoefer, Perra, Gonçalves, et al. [19] begin with

real-world time lapse data rather than simulations. This study applies symbolic transfer

entropy to measure unidirectional and bidirectional flow of information about a collective

action on Twitter, retroactively showing how cascades start from a small number of commit-

ted “driver” users and grow into broader decentralized and symmetric information networks.

1.2 Contributions of This Thesis

In this thesis, we create an agent-based cascade model with different susceptibility

of agents on temporal networks, utilizing a range of network topologies from random to

SF, including simulated networks and sampled real-world communities. Taking temporal

activity patterns and heterogeneous susceptibility into consideration brings models a step

closer to the real process of information spreading in human interaction networks than prior

representations, which assume fixed topologies and homogeneous susceptibility or consider

only one variability in human behavior at a time.

We simulate cascades beginning from both a single starting point, and a minimum

threshold multi-start scenario. In the former, a cascade begins at a single agent and we de-

termine the conditions under which the cascade will spread based on the susceptibility and

activity of neighbors. In the multi-start case, the network topology and neighbor suscepti-

bility is fixed, and we determine how many agents must begin “infected” to guarantee the

spread of the cascade through the majority of the network. In the multi-start scenario we

represent cascades with both random and explicitly-targeted high-degree starting locations.

This flexibility allows us to represent the organic spread of social information and external

influence campaigns such as we might see in propaganda or advertising.

We find that more scale-free networks have fewer cascades that spread throughout

the network, but more cascades that spread beyond initial starting regions. Heterogeneity
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among activity times deters cascade spread, while heterogeneity among susceptibility pro-

duces weak-points that facilitate cascade spread. We further discover that scale-free networks

are vulnerable to targeted attacks on hubs, but that this vulnerability exists in networks with

a highly power-law degree distribution and extremely high-degree hubs. Communities be-

come dramatically less vulnerable with even slight random perturbations to network linking,

and in most scenarios random attacks are only slightly less effective than targeted ones. Sim-

ulations on real-world network samples show that our results generalize beyond artificially

constructed topologies, but real-world networks may contain loosely linked sub-communities

that further isolate cascades, emphasizing the importance of network bridges.



CHAPTER 2

PROPAGATION MODEL

We have created an agent-based model with n agents, bidirectionally linked together either

randomly (according to the Erdős-Rényi (ER) model [20] with an arbitrary linking probabil-

ity), or in a Scale-Free (SF) configuration according to a simple power-law degree distribution

with an arbitrary exponent. In both cases, we examine only the giant connected component,

ignoring unreachable agents. The model proceeds in discrete time steps for simplicity. At

each timestep, any agents “contagious” with information cascade will attempt to spread

the cascade to each of their neighbors. This spread is limited by the infection threshold of

the target agent and whether they are currently active. Each infected agent spreads to all

neighbors synchronously, such that any agents “infected” in timestep t do not change their

state until the start of time t+ 1.

For each agent, we assign an infection threshold, which varies from 0 to 1, representing

the percentage of neighbors that must be infected before a cascade that can spread to the

agent. For example, an infection threshold of 0 indicates that any infected neighbor will

infect the agent. In contrast, an infection threshold of 1 means that all neighbors must be

infected before the agent will succumb to a cascade. Depending on the community behavior

being simulated, the infection thresholds are either assigned homogeneously throughout the

network or assigned according to a uniform distribution [0, θ].

Once an agent is infected, it is permanently infected, without any concept of “recovery”

as in the SIR model [6]. It is because recovery has a precise meaning in a disease model,

but has no obvious parallel in an information-spreading scenario. However, agents are only

considered “contagious” (spreading the cascade to peers) for T time steps, representing the

time during which the cascade-spread information is novel. This contagious period can be

calibrated to reflect any real-world cascade being represented but must be set to a finite

number, as the simulation concludes when no agents remain contagious. In our trials, we set

a contagious period of 10, determined experimentally to be a suitable baseline. Increasing

the contagious period beyond 10 did not significantly further the spread of cascades, so at

this value, the cascade is limited primarily by agent susceptibility and activity, as we desired,

rather than being limited by an arbitrarily-set constant.

5
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Each agent has a activity state: “active” or “inactive”. Information can only spread

between two active agents. The transition between these two states is modeled as a markov

chain such that if an agent is active at timestamp T , it will active at time T + 1 with

probability 1 − pi and inactive with probability pi [10]. An agent inactive at time T will

become active with probability qi and will remain inactive with probability 1 − qi. This

relationship is visualized in Figure 2.1, below. The probability of active or inactive follows

the following relationship:

λpi = (1 − λ)qi (2.1)

where the parameter λ describes the total ratio of time that the agent is active. Increasing

the activity period increases the susceptibility of an agent, but we find in section 3.3 that

the effect is significant only when the network topology and infection thresholds are near a

critical point and would otherwise allow a cascade to spread.

activeinactive

pi

qi

1 − qi 1 − pi

Figure 2.1: Activity Markov chain of agents, adapted from Akbarpour and
Jackson [10]. Represents the probabilities of each agent
transitioning between active and inactive states.

Furthermore, the transitions between activity states may follow different patterns. In

this work, we study four activity patterns as described in Ref. [10]: (1) Poisson agents that

randomly switch states every timestep with a specified probability distribution for being

active at any step; (2) Sticky agents that remain active or inactive for long stretches to

maintain their specified activity percentage, representing sequences like a 9-5 work day; (3)

Reversing agents that alternate between active and inactive as frequently as possible while

maintaining their specified activity percentage, representing periodic behavior like checking

a phone for new messages every few minutes; (4) AlwaysOn agents active at all times, serving

as a control group to remove activity patterns as an influence on cascade success.
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SIMULATION METHODOLOGY

3.1 Infection Threshold Parameter Sweeps

We initially examined the effect of increasing infection thresholds on homogeneous

networks of agents with a specific activity type. For each simulation, we created random

(Erdős-Rényi [20]) and Scale-Free networks [21] with the parameters shown in Tables 3.1

and 3.2. We generated each network with a single agent type (AlwaysOn, Poisson, Sticky,

or Reversing), and initially a homogeneous infection threshold. In each simulation, a single

randomly-selected node is infected at a time step 0, and all other agents are susceptible.

The simulation ends when no agents remain contagious. For each configuration, we generate

and simulate 300 networks, so anomalous network topologies or cascade starting points are

unlikely to affect the median result.

Table 3.1: Network parameters for initial simulation on Erdős-Rényi
communities.

Nodes Avg. Degree Avg. Activity
1000 5 60%

Table 3.2: Network parameters for initial simulation on scale-free communities.

Nodes Edges Per Node Clustering Exponent Avg. Activity
1000 2 2 60%

We then simulated networks with heterogeneous infection thresholds. For Figure 4.2

the x-axis represents the upper bound infection threshold, meaning each agent has a uniformly

random infection threshold between 0.0 and the value of the x-axis.

We graph each simulation (Figures 4.1 and 4.2) as a data point, with color denoting

the density of results. This allows us to represent both patterns of simulation behavior

and exceptions to those patterns. An infection threshold of 0.001 implies the cascade never

spread past the initial starting node, while a result of 1.0 means the cascade has reached the

entire network. Results are on a color gradient such that yellow data points indicate many

results in that region, while indigo indicates few data points in the region. This visualization

7
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is ideal for describing bimodal distributions where some cascades spread through 100% of

the network and some through 0% of the network, because a simple mean could misleadingly

report than an average cascade spread through 50% of the network.

3.2 Network Topology Sweep: Confirmation Study

We confirm our results from Section 3.1 across a range of ER linking probabilities

and SF clustering coefficients to show that the observed cascade behavior is not anomalous.

We test networks of 1000 agents with Poisson activity patterns, varying both the network

parameters and infection thresholds in Figure 4.3. This sweep also provides an analog for

comparing urban and rural environments with different densities of social connections and

different levels of heterogeneity.

3.3 Activity Period Parameter Sweep

We tested a variety of activity times for each agent behavior. As in Section 3.1 we

tested on random and scale-free networks, with homogeneous and heterogeneous infection

thresholds. For homogeneous agents we set a fixed infection threshold of 0.15, and for

heterogeneous agents we set an upper-bound threshold of 0.5. These thresholds correspond

with the phase transitions in Figures 4.1 and 4.2, allowing us to examine the parameter

range where activity periods are likely to have the most significant effect.

We performed a parameter sweep from 0% agent activity (never active, cannot be

infected) to 100% agent activity (active at every time step, infection limited only by infection

threshold). In these simulations (Figures 4.4 and 4.5) the x-axis represents the percent of

time agents are active, and the y-axis again represents the percent of the network a cascade

spread through. Note that agent activity is not synchronized; that is, two agents with 80%

activity are both active at 80% of all time steps, but not necessarily the same timesteps.

3.4 Minimum Starting Infections: Random and Targeted Attack

Lastly, we examine a scenario where cascades begin from a variable number of agents

and network parameters are fixed. We simulate both a case where cascades start from

multiple random agents, and one where cascades start from a number of the highest-degree

agents, and determine how many agents must begin infected for the cascade to spread through
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at least 95% of the network. This methodology has been used to simulate random equipment

failures and malicious attacks in distributed load networks such as power grids [22], but is

equally appropriate in an information-spreading context.

In these trials we simulate 100 networks of 1000 Poisson agents with 2000 total edges for

each set of network parameters, and increase the number of starting agents until the cascade

dominates the network. These iterations limit the effect anomalous network topologies or

unusual random starting locations can have on results.

3.5 Real-World Networks

To confirm our results outside of artificially-constructed networks, we apply our simu-

lation to two real-world networks: An academic collaboration network within General Rel-

ativity and Quantum Cosmology [23], and a sampling of Facebook friend circles [24], both

publicly available through the Stanford SNAP repository [25]. In both networks we consider

only the giant weakly-connected component, ignoring isolated sub-communities a cascade

would be unable to reach.

Table 3.3: Network attributes for real-world SNAP networks. Clustering
exponent determined by the Kolsmogorov-Smirnov test [26].

Network Nodes Edges Avg. Degree Clustering Exponent
GrQc Citation 4158 13422 6.456 2.063

Facebook Friends 4093 88234 43.691 2.510

The citation network represents authors in the General Relativity and Quantum Cos-

mology category of ArXiV. Each edge represents one or more co-authored papers. The

Facebook friend-circle network consists of nodes representing individual users, and edges

representing a bidirectional friend status. Neither network includes duplicate or self-edges.

Network attributes for both networks are shown in Table 3.3. The citation network

has an average degree similar to our simulated networks, and is extremely scale-free. The

Facebook friend network has a dramatically higher average degree than what we have tested

before, and has a degree distribution further from a perfect power law, but is still well within

scale-free bounds.

We conduct a parameter sweep from an infection threshold of 0.0 to 1.0 with increments

of 0.01, for a total of 101 testing conditions. For each condition, we test 300 random assign-

ments of infection thresholds, activity periods, and starting infected agent, according to the
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methodology in Section 3.1. This provides thorough test coverage for two fixed, real-world

network topologies.

For reader convenience, we provide visual renderings of both the real-world networks

Figures 3.1 and 3.2, as generated by a stochastic force-atlas clustering in Cytoscape [27].

Figure 3.1: Cytoscape render of collaboration network [23] using an
edge-repulsive weak clustering layout. Nodes represent authors,
edges represent co-authorship of a paper. Most authors are part of
the central cluster with stereotypical SF attributes.
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Figure 3.2: Cytoscape render of Facebook friend network [24] using an
edge-repulsive weak clustering layout. Nodes represent Facebook
users while edges indicate a bidirectional friendship status. SF
degree distribution is present, but nodes are clearly distributed
across several distinct friend-groups, with few bridges in-between.



CHAPTER 4

RESULTS

4.1 Information Spread in Social Network with Homogeneous In-

fection Thresholds

We first created networks with homogeneous infection thresholds, so that every agent in

the network had the exact same infection conditions. In these conditions, most information

cascades spread throughout the network when the infection threshold is lower than a critical

point, or restrict the information to close to the initial starting point if the infection threshold

is above this critical value, showing a discontinuous first order phase transition on the final

infected fraction of agents as the infection threshold increases. Both the activity patterns

and network topology have a small effect on the success of an information cascade when

agents have homogeneous traits.

In all homogeneous activation networks, cascades generally succeed (spread through

the at least 95% of the network) when the infection threshold is below the average degree of

agents in the network, and fail shortly above this same point (Fig. 4.1). Given a constant

infection threshold, the only variation in cascade susceptibility comes from the degree of each

agent. The lower degree an agent has, the higher susceptibility that agent has. For instance,

an agent with a degree of three and an infection threshold of 0.3 requires only one infected

neighbor to activate, while an equivalent agent with a degree of nine requires three infected

peers to activate. Without early susceptible low-degree neighbors, the cascade cannot build

a sufficient base to capture higher-degree peers. This effect is particularly pronounced in

random networks, as shown in Figures 4.1a to 4.1d, where all agents have close to a degree

of 5. In this environment there is either a low enough infection threshold to spread the

cascade throughout the network, or there is too high a threshold to infect any early agents.

In SF networks, a wider distribution of degrees allows some cascade spread regardless

even with high infection thresholds, but constrains most cascades from spreading across

the network. Even with very low infection thresholds, some cascades will start at agents

who only have unassailably high-degree hubs as neighbors, preventing any cascade spread

(visualized as a green line in Figures 4.1e to 4.1h). Many agents are likely to be connected to

12
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Figure 4.1: Fixed homogeneous infection threshold with Erdős-Rényi (ER) and
scale-free (SF) networks. Brighter and more yellow colors indicate
more simulations in an end-state, with results to color shown on
the color-bar to the right. With random networks there are almost
boolean results: cascades either spread through the entire network,
or fail almost immediately. A minority of cascades fail even under
favorable infection thresholds due to poor starting position of the
initially infected agent. With SF networks the range of
sometimes-successful inputs increases, because SF networks are
much more prone to cascades if the starting infected agent is a hub,
which infrequently occurs by chance. In addition, scale-free
networks feature a large number of partially successful cascades,
capturing 10% or more of the network, but failing to pass 50%. This
is also a result of hub behavior, where a cascade may be able to
spread through an entire sub-region of the network with vulnerable
low-degree agents, but is effectively “quarantined” by an SF hub
with too high a degree to infect. Histograms at the bottom of the
figure highlight distribution of results within a region of infection
thresholds.
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some low-degree neighbors, and may spread cascades to these highly-susceptible peers even

with an infection threshold higher than the mean degree of the network.

For AlwaysOn agents (Figures 4.1a and 4.1e), cascade success is almost perfectly

boolean: Cascades either sweep the entire network, or fail to spread immediately. Suc-

cess is less definite with other activity patterns, and some cascades halt at 95 or even 90%

spread. This is because a cascade can only spread if two peers are active simultaneously, and

non-deterministic activity patterns open the possibility that there will never be sufficient

active neighbors at any given moment to overwhelm a particular agent. Without inactive

periods there can be no activity time inhibitor on when a cascade spreads.

4.2 Information Spread in Human Interaction Networks with Het-

erogeneous Infection Thresholds

When agents have heterogeneous infection thresholds, the differences between activity

patterns and network topologies become more pronounced. When examining the percent

of infected agents over a range of infection thresholds, we see mixed phrase transitions of

discontinuous first-order and continuous second order, representing much more interesting

behavior than the homogeneous case.

For the Poisson, Sticky, and Reversing activity patterns, the cascade results show a

continuous second-order phase transition from one to zero, and a discontinuous first-order

phase transition from zero to one. For the Always-On pattern, the peak values jump to zero

an infection threshold of 0.65 for ER networks, and 0.71 for SF networks, both of which are

much higher than the respective homogeneous cutoffs, 0.22 and 0.17. The point of phase

transition for Poisson agents is much lower, at 0.51 for ER networks, and just under 0.48 for

SF. This discrepancy is the result of the difficulty in building momentum without vulnerable

neighbors. Since there are far more vulnerable nodes in a heterogeneous AlwaysOn activation

network, cascades will almost always spread to some neighbors.

In SF networks, the peak values show a discontinuous phase transition from almost one

hundred percent of the network to zero, similar to the homogeneous case. However, we find

that the boundaries between successfully propagating cascade conditions and unsuccessful

ones are no longer nearly as tightly defined, and the ending states of the simulations (rep-

resented by the grey dots in Figures 4.2e to 4.2h) are more diverse than the homogeneous



15

Figure 4.2: Fraction of infected agents after cascades where agents have
heterogeneous infection thresholds. (a) For ER networks with
Always-On activity patterns, the peak values for each infection
threshold jump from a value close to one to zero at a critical point,
indicating a well-defined transition from completely successful
cascade-spread conditions to complete failure conditions. For
networks with other activity patterns (b)-(d), mixed phase
transitions appear: one high peak values continuously decrease as
the infection threshold increases, and another low peak value
disappear after the critical point. In SF networks (e)-(h),
regardless of the activity pattern, peak values have discontinuous
phase transitions similar to the homogeneous case, but with a much
wider range of simulation results (each gray dot).
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case. As in the constant infection threshold simulations, AlwaysOn agents have the strictest

behavior, with most cascades either succeeding entirely or failing immediately. Other ac-

tivity patterns yield a variety of intermediate outcomes, with cascades halting everywhere

between 0 and 100% success.

The wider phase-transition in SF networks reflects how sensitive these networks are to

initial starting conditions: If a cascade starts from a well-connected hub, it can reach many

low-degree nodes with ease. Because infection thresholds are heterogeneous, many of these

neighbors will be vulnerable. If a cascade starts from a less-connected agent, it will have

a small number of neighbors, and some of these neighbors must be vulnerable hubs for the

cascade to spread far. Depending on the starting distance from a well-connected hub, and

the infection thresholds of all agents between the starting point and that hub, a cascade can

halt at many junctions with insufficient momentum.

In addition, we study how the topological characteristics, such as the average de-

grees in ER networks and the exponent of degree distribution in SF networks, influence the

information-spreading process, and find that these topological characteristics have a minimal

effect except at extreme values. Very low linking probabilities in ER networks (Figures 4.3a

and 4.3c) produce additional vulnerable agents due to their low-degree, and facilitate cascade

spread. Cascades can succeed under a variety of conditions depending on the vulnerability

of peers, but there is a sharp transition from “successful” to “failed” cascades, and partial-

successes can only exist within a very small intermediate parameter-space. In scale-free

networks, as shown in Figures 4.3b and 4.3d, this non-boolean space expands dramatically,

and many partial-successes, but fewer complete-successes exist.

4.3 The Influence of Activity Periods on Information Spread

Figures 4.4 and 4.5 show that agent activity periods can have a deciding effect on

cascade success, but that network topology is the dominant factor. When the infection

threshold would otherwise allow a cascade to pass, the activity patterns of agents can con-

strain a cascade and prevent its spread. With homogeneous infection thresholds, especially

on random networks, this is a near-instant phase transition (Figure 4.4), as all agents have

nearly equal degree and cascade susceptibility, and inactivity is the only thing preventing in-

fection. With heterogeneous infection thresholds (Figure 4.5) the relationship is more linear,

as more resilient agents must be active for long stretches of time to maximize susceptibility,
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but more susceptible agents need only be active briefly to become infected by any neighbor.

For scale-free networks agent activity patterns still act as a constraint on cascade success,

but the results are far less consistent, since the cascade more heavily depends on starting

location and the vulnerability and activity of high-degree hub nodes.

4.4 Minimum Starting Infection to Guarantee Total Information

Spread

In the results above, we examine under what conditions a cascade can spread through-

out the network from a single inception point, but we can instead frame the study as “how

many agents must begin infected to spread a cascade throughout a network with particular

fixed parameters?” This more accurately represents scenarios such as advertisement or pro-

paganda, which rarely begin from a single point in a community. These intentional cascades

not only start from several participants but may have carefully chosen the starting partic-

ipants to maximize the effect. We study both random and targeted methods for selecting

initial participants.

We find that all attack strategies succeed with fewer infected starting agents for highly

heterogeneous scale-free networks, and that targeting the hubs in these communities is ex-

tremely effective. However, this advantage rapidly disappears as the network conditions

become even slightly more chaotic, at which point targeted attack strategies are only mod-

erately more effective than random attacks. In communities with high infection thresholds

targeted attacks are indistinguishable in effectiveness, or even perform slightly worse, than

random attacks.

As shown in Fig. 4.6, targeted attacks for infection thresholds below 0.5 are gener-

ally more successful (require a lower starting infection percentage) than random attacks.

Targeted attacks also require far fewer starting agents when the network is extremely het-

erogeneous in degree distribution (γ = 2). Interestingly, this advantage does not inversely

scale linearly with network heterogeneity, but instead rapidly dissipates when the network is

even slightly less heterogeneous. Random attacks remain about equally effective across all

network topologies, but are marginally more successful with highly-heterogeneous networks

because there is a chance that the hubs will be randomly selected, lowering the average

number of starting agents needed for cascade success.
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There is a slight jump in targeted attack effectiveness at just under γ = 3, corre-

sponding with a phase transition from scale-free to random networks [28]. After this phase

transition, the highest degree nodes are not hubs, as the network is more densely connected

and not dependent on these nodes as bridges. Under these conditions, targeted attacks have

a more cumulative effect, as nodes are likely to have edges to more high-degree nodes, briefly

improving targeted attack performance.

We are particularly interested in the difference between targeted and random attacks

as the infection threshold of the network changes. For an infection threshold of 0.3, where

30% of neighbors must be infected for a cascade to spread, targeted attacks require only

about 5% of the network be infected for cascade success, while random networks require

closer to 20%. When the infection threshold increases to 40%, this distinction becomes even

more dramatic, and targeted attacks require between 20 and 30% starting infection, while

random attacks require at least 40%. However, as the infection threshold further increases

to 50%, these differences disappear, and both attack strategies require about 70% starting

infection unless the network is highly heterogeneous in degree distribution.

Under high infection thresholds, targeted attacks perform marginally worse than ran-

dom attacks for all networks with γ > 2.4, although the results are extremely dependent on

network topology, as seen in the distribution of targeted attack results. In networks where

more than half of an agent’s neighbors are of high-degree, targeting high-degree nodes is ef-

fective. In any network where an agent has few high-degree and mostly low degree neighbors,

starting from several random positions is more likely to encompass half an agent’s neighbors.

These results are intuitive: with a sufficiently low infection threshold, the cascade

starting point is less relevant, because it will be able to spread through the network with ease

regardless of degree. When the infection threshold is sufficiently high, the starting location is

also irrelevant, because a dominating percentage of the network must start infected to spread

to any new agents. Only in a middle region, where it is challenging but not overwhelmingly

difficult for a cascade to spread, are targeted attacks a dramatic improvement over random

ones.
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Figure 4.3: Variation on infection threshold and network density with
homogeneous and heterogeneous infection thresholds for Poisson
agents. Color indicates fraction of nodes infected. Homogeneous
networks show near-boolean cascade success, with some partial
successes in SF networks, and a small number of
nearly-complete-successes for low-link Erdős-Rényi networks.
Heterogeneous networks have dramatically more
partial-cascade-successes, representing a smooth phase transition
from successful to failed cascade-spread conditions. These results
reinforce the patterns seen in Figures 4.1 and 4.2, and demonstrate
that the distribution of infection thresholds has a far more decisive
role in cascade success than network topology. We have excluded
all Erdős-Rényi data points with a link probability of exactly zero,
as any network with no edges will consist of a single node, and all
cascades will by definition spread through 100% of the network.
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Figure 4.4: Sweep of activity time for infection threshold 0.15, with activity
periods from 0% to 100% and homogeneous infection thresholds. In
random networks activity patterns can be a deciding factor in
cascade propagation, and there is a linear relationship between
agent activity and cascade success from about 30% to 50% activity.
The anomalous behavior for reversing agents at 50% activity is an
unstable equilibrium case where agents are active on either even or
odd timesteps, effectively partitioning the network in half and
severely hindering the spread of any cascade. With even slight
perturbations in agent activity time the agents will naturally
“desynchronize” and spread cascades to one another. In scale-free
networks the activity time of agents has a less pronounced, but still
significant, influence on cascade success. This is likely because the
activity time of hubs is significant and constraints cascades, but the
majority of agents are of lesser consequence.
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Figure 4.5: Sweep of activity time for infection threshold 0.5, activity periods
from 0% to 100%. Heterogeneous infection thresholds. The linear
relationship for random networks indicates that activity time is a
deciding factor when the network topology and infection thresholds
are at an unstable point. As activity moves from 40% to 100%,
cascades become more and more successful, until the majority of
cascades capture the entire network. As in Figure 4.4, reversing
agents demonstrate anomalous behavior with an activity period of
exactly 50% because of unstable partitioning among agents active
on even and odd timesteps. For SF networks the agent activity
period is not as deciding a factor, but is still an enabling one.
While most cascades fail regardless of activity period, the number
of cascades that partially or completely succeed is bound by the
activation period.
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Figure 4.6: Minimum starting infection needed for cascade success (spread
through ≥ 95% of the network). Note that as heterogeneity of SF
networks decreases, targeted attacks rapidly become less effective.
Networks with more resilient agents are immune to all but the most
overwhelming conditions, where cascades start with 60 − 70% of the
network already infected. High-infection threshold targeted attacks
have a wider range of success conditions than equivalent random
attacks (represented by the confidence interval around each
simulation line), because the effectiveness of targeted attacks is
more dependant on network topology, and therefore less consistent
across multiple simulations. Networks with heterogeneous agent
susceptibility have similar behavior to homogeneous networks, but
are dramatically more vulnerable to attack. Only with extremely
high infection thresholds can a heterogeneous network sustain an
attack when over 10% of its agents are infected.
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4.5 Real-World Network Trials

Our simulations on real-world communities, shown in Figures 4.7 and 4.8, reinforce

our results from artificially-created networks and provide new insights. The citation network

behaves almost identically to our generated networks, with a homogeneous phase transition

at a slightly lower infection threshold of about 16%, corresponding with a higher average

degree of 6.456 than our generated networks that had an average degree of 5.

The Facebook network roughly follows the predicted pattern, but with two distinct

differences: The homogeneous phase transition occurs at a much higher infection threshold

than the average degree would suggest, and the heterogeneous simulation contains a large

number of “plateaus”, where a cascades with a wide number of infection thresholds halt.

The first difference can be explained by the distribution of degrees. In random networks

all nodes have very similar degrees, so the average degree coupled with a homogeneous

infection threshold provides a decent estimate of cascade success. In our artificial scale-free

networks there are hubs with a much higher degree close to 20, but with a median of 3

and a mean of 4, the average degree continues to be a rough estimate of cascade success, if

less meaningful than with random networks. However, in the Facebook network the degree

distribution is dramatically skewed, with hubs holding over a thousand edges, and a median

of 25. With such disproportionate influences, the average degree of 44 provides a poor

estimate of homogeneous cascade success.

The “plateau” effect is a consequence of the clustering within the network. Large

communities consisting of hundreds or thousands of nodes are tightly linked internally, but

contain only a handful of bridges to other communities. Cascades “lurch” through sub-

communities if they capture sufficient bridges to enter. In the heterogeneous simulation,

this results in the staggered cascade result lines representing each large sub-community a

cascade was able to capture. We have confirmed this explanation by rendering a sample of

simulations with end-states in the plateau region, and include examples in Table 4.1.

We can also eliminate the plateau effect through network perturbations. By adding

1000 random edges we only slightly change the network metrics, but re-integrate the sub-

communities, and yield results similar to our simulated random networks, shown in Fig-

ure 4.9. The augmented network has an average degree of 44.176 and clustering exponent of

2.516, compared to the original 43.691 and 2.510. This perturbation has a basis in real-world

techniques for altering network topology to increase the spread of information [29]. While
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the plateau effect does not correspond to a mathematical-theoretic scale-free model, recent

research suggests that most real-world social networks are not strongly scale-free, but are

weakly scale-free and display similar but not identical behavior to structural models [30].

Figure 4.7: Collaboration network for ArXiV papers from the General
Relativity and Cosmology category [23]. This real-world scale-free
network closely follows predictions from simulated networks in
Figure 4.2.
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Figure 4.8: Anonymized friendship graph from Facebook data [24]. Cascades
generally follow scale-free predictions, but with large visible
“plateaus” corresponding to highly isolated friend circles. Most
cascades end with some integer number of friend circles captured,
with success bounded by the number of bridges they capture.

Figure 4.9: Cascade simulations results on an augmented Facebook friendship
graph. We have added 1000 random edges (about a 1% increase),
which raises the number of bridges between previously isolated
sub-communities. The results are quite similar to the artificial
random networks in Figure 4.2.
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Table 4.1: Renders of simulation results for SNAP Facebook Friend network
with varying infection thresholds. Red nodes are infected, blue are
uninfected. These results demonstrate the “plateau” effect discussed
in Figure 4.8.

Infection
Threshold

Network Captured Snapshot

26% 87%

32% 68%

36% 21%



CHAPTER 5

DISCUSSION

5.1 Conclusion

We outline the relationship between network topology, agent behavior, and cascade

viability in human communication networks. We find that scale-free networks allow fewer

completely successful information cascades, but many more partially-successful ones. We

further find that communities with asynchronously active participants are more resistant to

cascades, and that communities with mixed susceptibility to their peers are more vulnerable.

Agent activity periods play a significant role in enabling cascades, but cascade success is

largely determined by network topology and infection thresholds. Finally, we find that

cascades starting from well-connected hubs are more successful than cascades starting from

random locations in the network, but the differences are only dramatic in highly degree-

heterogeneous communities, or communities with a narrow-range of susceptibility to peer

influence. Simulations on real-world networks reinforce these results, and illustrate that

sub-community dynamics not seen in artificial networks have an inhibiting effect on cascade

spread, belaboring the importance of bridges in information spread. These results provide

insight into information-spreading mechanisms that could someday aid design of platforms

or community structures to facilitate the spread of positive ideas or halt the dissemination

of negative content like hatespeech.

5.2 Future Work

The work presented here provides ample opportunity for further study. For instance,

our current simulations include only one type of agent behavioral pattern at a time, while one

could use heterogeneous collections of activity types with varying activity time and infection

thresholds. We studied random and degree-based initial infection schemes, but additional

selection criteria are possible, such as “localized” infection [31], [32] by infecting an arbitrary

agent and its neighbors. This guarantees a level of “momentum” for the cascade, and may

be much more successful than starting at only hubs, particularly in disassociative networks.

This study could be further extended by reproducing research on reinforced agents

27
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from Yuan, Hu, Stanley, et al. [33]. Since our model is focused on human societies with

heterogeneous activity patterns, it would be valuable to understand whether reinforcing

sub-communities is more or less effective in this context. This is particularly interesting

in highly scale-free communities, where reinforcing hubs and bridges is most likely to be

successful.

Finally, our work assumes each agent has an equal influence on its peers, and informa-

tion spread is limited solely by susceptibility to peer pressure and the number of neighbors.

Allowing heterogeneous influence, where some agents have a disproportionate effect on their

neighbors, or even a disproportion effect on a sub-group of neighbors, may produce more

realistic results. This disproportionate influence is similar to structuring networks with trait-

based homophily, as in Jackson and López-Pintado [34], and could represent one group’s trust

of a media source. Our Facebook Friend network sample (Section 4.5) includes tight clusters

with limited bridges in its network topology, providing an intriguing starting point for explor-

ing in-group and out-group trust. This can ultimately be extended to study the differences

in information flow in different types of communities, as defined by social frameworks like

group-grid theory [35], which categorizes based on attitudes towards individualism, social

hierarchy, and insularity.
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