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ABSTRACT

Information Cascades are propagation patterns in human networks where information such

as political propaganda, rumors, or fashion trends, emanate from one or more starting points

and are either accepted or rejected by each connected member of a community. The deci-

sions made by individuals either govern a large ripple through the community, or prevent

signi�cant changes from occurring, making Information Cascades of avid interest within eco-

nomics and network science. Since Information Cascades have similar behavior to the well

studied �eld of epidemiology, many Cascades are modeled with disease propagation models

like the Susceptibility, Infection, and Recovery (SIR) model. In this thesis we argue that

such generic models are insu�cient for predicting information spread in human behavioral

networks, because they do not represent temporal availability of communication and indi-

vidual variations in susceptibility to peer-pressure. We propose a new model wherein agents

have heterogeneous activity periods and activation thresholds, representing individual sus-

ceptibility to peer-pressure. By applying this model to networks with a range of topologies,

as well as real-world networks, we are able to more accurately represent human behavior in

a variety of communities.
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CHAPTER 1

INTRODUCTION

1.1 Background

Global Cascades are substantial propagating changes throughout a network triggered

by small initial perturbations [1]. These cascades can describe a wide variety of physical and

social phenomena, from rippling failures in an electrical grid [2], to waves of stock-market

sales [3], and the spread of computer viruses [4]. Studying cascades has the potential to

predict and inuence behavior in a number of systems, from limiting the spread of infectious

diseases to promoting the dissemination of information. In this thesis we model information

spread in human social networks, with particular consideration for individual susceptibility

to peer pressure and individual activity patterns. We examine cascades starting from both a

single point, as in most previous studies, and cascades starting from several random or chosen

locations, better representing behavior in information campaigns such as advertisement and

propaganda. We study cascade behavior across a variety of network topologies, endeavoring

to better understand the role of community structure in information spread, and the interplay

between community structure and individual behavior.

In a social interaction network, agents communicate with their neighbors to pass in-

formation. In most previous studies, the network topology is often assumed to be �xed [5],

and the behavior patterns of each agent are assumed to be homogeneous. In these models,

agents have a �xed susceptibility to new information based on pressure from their neighbors,

and over time may be \infected" with information (terminology inherited from academic lit-

erature on epidemic modeling, such as the Susceptibility, Infection, and Recovery model [6]),

and begin propagating information to their neighbors [7]. Assumptions about homogeneous

agent behavior and �xed social relationships are unrealistic in real-life scenarios leading to a

need for models that are more heterogeneous. In some engineered systems, this heterogene-

ity can be directly measured, such as in the fault-tolerances of relays in an electric-grid [2].

Human behavior in networks is more challenging to quantify and measure, but it is widely

accepted that people have varying susceptibility to peer pressure and di�ering levels of social

activity.

More recent studies account for heterogeneous behavior in human networks, focusing

1
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on network topology [8], individual susceptibility to information [9], and time-based activity

periods [10]. For instance, Crucitti, Latora, Marchiori,et al. [8] tested network robustness

to intentional and accidental damage on random and scale-free (SF) networks. Li, Wang,

Sun, et al. [11] represented individual heterogeneity as di�erent probabilities of leaving the

network in the event of cascading crashes, and show that changes in this individual behav-

ior greatly change the system behavior in network collapses. Watts [9] provided a simple

quantitative representation for heterogeneous susceptibility to inuence: each agent is given

a susceptibility level we call aninfection threshold1 from a normal distribution, representing

individual personalities. Notably, this model assumes information susceptibility is based

solely on the number of a�ected peers and does not consider some peers to be more inu-

ential than others, nor does it consider the possibility of agent susceptibility changing over

time.

Other studies consider the e�ect of time on network structure. Holme and Saram•aki [12]

introduced a concept oftemporal networks, where edges are active only at speci�c periods.

Belykh, Belykh, and Hasler [13] created temporal networks that add and remove edges

while maintaining small-world network characteristics, which could be used to model social

communities restructuring over time. By contrast, Akbarpour and Jackson [10] proposed a

subclass of temporal networks with a �xed topology describing social behavior. In this model,

edges representing social interactions are constant, but may only be enabled during particular

activity periods, representing activity patterns such as a workday or school schedule.

Gomez-Rodriguez, Leskovec, and Sch•olkopf [14] develop an alternative contagion-inspired

methodology where the network topology is not known before simulation. Agent infection

is observable as the information spreads, but the route of spread (edge between agents) is

unknown, meaning individuals are unaware of where they �rst learned information from.

The researchers attempt to predict the edges of the network based on infection, and infer

which links impede or facilitate information spread. This is similar to real-world studies on

communities with publicly identi�ed members, but obscured social ties and hierarchies [15].

Sobkowicz [16] creates an arti�cial social network model where leaders have dispropor-

tionate inuence on the beliefs of their followers. The authors later extend this study to

create an opinion dynamics simulation based on real-world data from Polish politics [17].

1In previous related papers this is called an \activation threshold". We rename the term to avoid confusion
with the similar terminology \activity period"
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Galam [18] creates an alternative model representing opinion dynamics in two-party

competitive politics. In their system, small groups meet to discuss politics, and change their

political alignment based on the majority opinion in the group. Agents have heterogeneous

collaborative behavior, and can either conform to the majority opinion, remain inexible

regardless of majority, or reject the group opinion as contrarians. By creating many of

these group interactions over time, a political party's dominance spreads through the larger

community, ending in their opinion spreading throughout the majority of the network.

Other researchers such as Borge-Holthoefer, Perra, Gon�calves,et al. [19] begin with

real-world time lapse data rather than simulations. This study applies symbolic transfer

entropy to measure unidirectional and bidirectional ow of information about a collective

action on Twitter, retroactively showing how cascades start from a small number of commit-

ted \driver" users and grow into broader decentralized and symmetric information networks.

1.2 Contributions of This Thesis

In this thesis, we create an agent-based cascade model with di�erent susceptibility

of agents on temporal networks, utilizing a range of network topologies from random to

SF, including simulated networks and sampled real-world communities. Taking temporal

activity patterns and heterogeneous susceptibility into consideration brings models a step

closer to the real process of information spreading in human interaction networks than prior

representations, which assume �xed topologies and homogeneous susceptibility or consider

only one variability in human behavior at a time.

We simulate cascades beginning from both a single starting point, and a minimum

threshold multi-start scenario. In the former, a cascade begins at a single agent and we de-

termine the conditions under which the cascade will spread based on the susceptibility and

activity of neighbors. In the multi-start case, the network topology and neighbor suscepti-

bility is �xed, and we determine how many agents must begin \infected" to guarantee the

spread of the cascade through the majority of the network. In the multi-start scenario we

represent cascades with both random and explicitly-targeted high-degree starting locations.

This exibility allows us to represent the organic spread of social information and external

inuence campaigns such as we might see in propaganda or advertising.

We �nd that more scale-free networks have fewer cascades that spread throughout

the network, but more cascades that spread beyond initial starting regions. Heterogeneity
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among activity times deters cascade spread, while heterogeneity among susceptibility pro-

duces weak-points that facilitate cascade spread. We further discover that scale-free networks

are vulnerable to targeted attacks on hubs, but that this vulnerability exists in networks with

a highly power-law degree distribution and extremely high-degree hubs. Communities be-

come dramatically less vulnerable with even slight random perturbations to network linking,

and in most scenarios random attacks are only slightly less e�ective than targeted ones. Sim-

ulations on real-world network samples show that our results generalize beyond arti�cially

constructed topologies, but real-world networks may contain loosely linked sub-communities

that further isolate cascades, emphasizing the importance of network bridges.



CHAPTER 2

PROPAGATION MODEL

We have created an agent-based model withn agents, bidirectionally linked together either

randomly (according to the Erd}os-R�enyi (ER) model [20] with an arbitrary linking probabil-

ity), or in a Scale-Free (SF) con�guration according to a simple power-law degree distribution

with an arbitrary exponent. In both cases, we examine only the giant connected component,

ignoring unreachable agents. The model proceeds in discrete time steps for simplicity. At

each timestep, any agents \contagious" with information cascade will attempt to spread

the cascade to each of their neighbors. This spread is limited by the infection threshold of

the target agent and whether they are currently active. Each infected agent spreads to all

neighbors synchronously, such that any agents \infected" in timestept do not change their

state until the start of time t + 1.

For each agent, we assign aninfection threshold, which varies from 0 to 1, representing

the percentage of neighbors that must be infected before a cascade that can spread to the

agent. For example, an infection threshold of 0 indicates thatany infected neighbor will

infect the agent. In contrast, an infection threshold of 1 means thatall neighbors must be

infected before the agent will succumb to a cascade. Depending on the community behavior

being simulated, the infection thresholds are either assigned homogeneously throughout the

network or assigned according to a uniform distribution [0; � ].

Once an agent is infected, it is permanently infected, without any concept of \recovery"

as in the SIR model [6]. It is because recovery has a precise meaning in a disease model,

but has no obvious parallel in an information-spreading scenario. However, agents are only

considered \contagious" (spreading the cascade to peers) forT time steps, representing the

time during which the cascade-spread information is novel. This contagious period can be

calibrated to reect any real-world cascade being represented but must be set to a �nite

number, as the simulation concludes when no agents remain contagious. In our trials, we set

a contagious period of 10, determined experimentally to be a suitable baseline. Increasing

the contagious period beyond 10 did not signi�cantly further the spread of cascades, so at

this value, the cascade is limited primarily by agent susceptibility and activity, as we desired,

rather than being limited by an arbitrarily-set constant.

5
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Each agent has a activity state: \active" or \inactive". Information can only spread

between two active agents. The transition between these two states is modeled as a markov

chain such that if an agent is active at timestampT, it will active at time T + 1 with

probability 1 � pi and inactive with probability pi [10]. An agent inactive at time T will

become active with probability qi and will remain inactive with probability 1 � qi . This

relationship is visualized in Figure 2.1, below. The probability of active or inactive follows

the following relationship:

�p i = (1 � � )qi (2.1)

where the parameter� describes the total ratio of time that the agent is active. Increasing

the activity period increases the susceptibility of an agent, but we �nd in section 3.3 that

the e�ect is signi�cant only when the network topology and infection thresholds are near a

critical point and would otherwise allow a cascade to spread.

activeinactive

pi

qi

1 � qi 1 � pi

Figure 2.1: Activity Markov chain of agents, adapted from Akbarpour and
Jackson [10]. Represents the probabilities of each agent
transitioning between active and inactive states.

Furthermore, the transitions between activity states may follow di�erent patterns. In

this work, we study four activity patterns as described in Ref. [10]: (1) Poisson agents that

randomly switch states every timestep with a speci�ed probability distribution for being

active at any step; (2) Sticky agents that remain active or inactive for long stretches to

maintain their speci�ed activity percentage, representing sequences like a 9-5 work day; (3)

Reversing agents that alternate between active and inactive as frequently as possible while

maintaining their speci�ed activity percentage, representing periodic behavior like checking

a phone for new messages every few minutes; (4) AlwaysOn agents active at all times, serving

as a control group to remove activity patterns as an inuence on cascade success.



CHAPTER 3

SIMULATION METHODOLOGY

3.1 Infection Threshold Parameter Sweeps

We initially examined the e�ect of increasing infection thresholds on homogeneous

networks of agents with a speci�c activity type. For each simulation, we created random

(Erd}os-R�enyi [20]) and Scale-Free networks [21] with the parameters shown in Tables 3.1

and 3.2. We generated each network with a single agent type (AlwaysOn, Poisson, Sticky,

or Reversing), and initially a homogeneous infection threshold. In each simulation, a single

randomly-selected node is infected at a time step 0, and all other agents are susceptible.

The simulation ends when no agents remain contagious. For each con�guration, we generate

and simulate 300 networks, so anomalous network topologies or cascade starting points are

unlikely to a�ect the median result.

Table 3.1: Network parameters for initial simulation on Erd}os-R�enyi
communities.

Nodes Avg. Degree Avg. Activity
1000 5 60%

Table 3.2: Network parameters for initial simulation on scale-free communities.

Nodes Edges Per Node Clustering Exponent Avg. Activity
1000 2 2 60%

We then simulated networks with heterogeneous infection thresholds. For Figure 4.2

the x-axis represents theupper boundinfection threshold, meaning each agent has a uniformly

random infection threshold between 0:0 and the value of the x-axis.

We graph each simulation (Figures 4.1 and 4.2) as a data point, with color denoting

the density of results. This allows us to represent both patterns of simulation behavior

and exceptions to those patterns. An infection threshold of 0:001 implies the cascade never

spread past the initial starting node, while a result of 1:0 means the cascade has reached the

entire network. Results are on a color gradient such that yellow data points indicate many

results in that region, while indigo indicates few data points in the region. This visualization

7
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is ideal for describing bimodal distributions where some cascades spread through 100% of

the network and some through 0% of the network, because a simple mean could misleadingly

report than an average cascade spread through 50% of the network.

3.2 Network Topology Sweep: Con�rmation Study

We con�rm our results from Section 3.1 across a range of ER linking probabilities

and SF clustering coe�cients to show that the observed cascade behavior is not anomalous.

We test networks of 1000 agents with Poisson activity patterns, varying both the network

parameters and infection thresholds in Figure 4.3. This sweep also provides an analog for

comparing urban and rural environments with di�erent densities of social connections and

di�erent levels of heterogeneity.

3.3 Activity Period Parameter Sweep

We tested a variety of activity times for each agent behavior. As in Section 3.1 we

tested on random and scale-free networks, with homogeneous and heterogeneous infection

thresholds. For homogeneous agents we set a �xed infection threshold of 0:15, and for

heterogeneous agents we set an upper-bound threshold of 0:5. These thresholds correspond

with the phase transitions in Figures 4.1 and 4.2, allowing us to examine the parameter

range where activity periods are likely to have the most signi�cant e�ect.

We performed a parameter sweep from 0% agent activity (never active, cannot be

infected) to 100% agent activity (active at every time step, infection limited only by infection

threshold). In these simulations (Figures 4.4 and 4.5) the x-axis represents the percent of

time agents are active, and the y-axis again represents the percent of the network a cascade

spread through. Note that agent activity is not synchronized; that is, two agents with 80%

activity are both active at 80% of all time steps, but not necessarily thesametimesteps.

3.4 Minimum Starting Infections: Random and Targeted Attack

Lastly, we examine a scenario where cascades begin from a variable number of agents

and network parameters are �xed. We simulate both a case where cascades start from

multiple random agents, and one where cascades start from a number of the highest-degree

agents, and determine how many agents must begin infected for the cascade to spread through
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at least 95% of the network. This methodology has been used to simulate random equipment

failures and malicious attacks in distributed load networks such as power grids [22], but is

equally appropriate in an information-spreading context.

In these trials we simulate 100 networks of 1000 Poisson agents with 2000 total edges for

each set of network parameters, and increase the number of starting agents until the cascade

dominates the network. These iterations limit the e�ect anomalous network topologies or

unusual random starting locations can have on results.

3.5 Real-World Networks

To con�rm our results outside of arti�cially-constructed networks, we apply our simu-

lation to two real-world networks: An academic collaboration network within General Rel-

ativity and Quantum Cosmology [23], and a sampling of Facebook friend circles [24], both

publicly available through the Stanford SNAP repository [25]. In both networks we consider

only the giant weakly-connected component, ignoring isolated sub-communities a cascade

would be unable to reach.

Table 3.3: Network attributes for real-world SNAP networks. Clustering
exponent determined by the Kolsmogorov-Smirnov test [26].

Network Nodes Edges Avg. Degree Clustering Exponent
GrQc Citation 4158 13422 6.456 2.063

Facebook Friends 4093 88234 43.691 2.510

The citation network represents authors in the General Relativity and Quantum Cos-

mology category of ArXiV. Each edge represents one or more co-authored papers. The

Facebook friend-circle network consists of nodes representing individual users, and edges

representing a bidirectional friend status. Neither network includes duplicate or self-edges.

Network attributes for both networks are shown in Table 3.3. The citation network

has an average degree similar to our simulated networks, and is extremely scale-free. The

Facebook friend network has a dramatically higher average degree than what we have tested

before, and has a degree distribution further from a perfect power law, but is still well within

scale-free bounds.

We conduct a parameter sweep from an infection threshold of 0:0 to 1:0 with increments

of 0:01, for a total of 101 testing conditions. For each condition, we test 300 random assign-

ments of infection thresholds, activity periods, and starting infected agent, according to the
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methodology in Section 3.1. This provides thorough test coverage for two �xed, real-world

network topologies.

For reader convenience, we provide visual renderings of both the real-world networks

Figures 3.1 and 3.2, as generated by a stochastic force-atlas clustering in Cytoscape [27].

Figure 3.1: Cytoscape render of collaboration network [23] using an
edge-repulsive weak clustering layout. Nodes represent authors,
edges represent co-authorship of a paper. Most authors are part of
the central cluster with stereotypical SF attributes.
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